
Programming For Problem Solving

MALLA REDDY INSTITUTE OF TECHNOLOGY & SCIENCE
(SPONSORED BY MALLA REDDY EDUCATIONAL SOCIETY) Permanently Affiliated

to JNTUH & Approved by AICTE, New Delhi
NBA Accredited Institution, An ISO 9001:2015 Certified, Approved by UK Accreditation Centre

Granted Status of 2(f) & 12(b) under UGC Act. 1956, Govt. of India.

PROGRAMMING FOR PROBLEM SOLVING

COURSE FILE

B.Tech (CSE,IT,AI&ML,CS,DS) I Year – I Semester

R22 Regulation

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

(2022-2026)

Compiled by

1. S.Shirisha, Assistant Professor

2. N.Akhilandeshwari, Assistant Professor

3. V.Naveen Kumar, Assistant Professor

4. B.Pradeep Kumar, Assistant Professor

MALLA REDDY INSTITUTE OF TECHNOLOGY AND SCIENCE

(SPONSORED BY MALLA REDDY EDUCATIONAL SOCIETY)

Affiliated to JNTUH & Approved by AICTE, New Delhi

NAAC & NBA Accredited, ISO 9001:2015 Certified, Approved by UK Accreditation Centre

Granted Status of 2(f) & 12(b) under UGC Act 1956,Govt. of India.

Maisammaguda, Dhulapally, Post via kompally, Secunderabad – 500 100

www.mrits.ac.in

Programming For Problem Solving

COURSE FILE SUBJECT:

PROGRAMMING FOR PROBLEM SOLVING

ACADEMIC YEAR: 2022-2026.

REGULATION: R22

 NAME OF THE FACULTY : S . S H I R I S H A

 N . A K H I L A N D E S H W A R I

 V . N A V E E N K U M A R

 B. PRADEEP KUMAR

DEPARTMENT: CSE & IT

YEAR & SECTION: I Year-I SEM (CSE,CS,DS,AI&ML & IT)

SUBJECT CODE: CS103ES

Programming For Problem Solving

R22 B.Tech. Syllabus JNTU Hyderabad

PROGRAMMING FOR PROBLEM SOLVING

B.Tech. I Year I Sem. L T P C

3 0 0 3

Course Objectives:

● To learn the fundamentals of computers.

● To understand the various steps in program development.

● To learn the syntax and semantics of the C programming language.

● To learn the usage of structured programming approaches in solving problems.

Course Outcomes: The student will learn

● To write algorithms and to draw flowcharts for solving problems.

● To convert the algorithms/flowcharts to C programs.

● To code and test a given logic in the C programming language.

● To decompose a problem into functions and to develop modular reusable code.

● To use arrays, pointers, strings and structures to write C programs.

● Searching and sorting problems.

UNIT - I: Introduction to Programming

Compilers, compiling and executing a program.Representation of Algorithm - Algorithms for finding

roots of a quadratic equations, finding minimum and maximum numbers of a given set, finding if a

number is prime number Flowchart/Pseudocode with examples, Program design and structured

programming

Introduction to C Programming Language: variables (with data types and space requirements),

Syntax and Logical Errors in compilation, object and executable code, Operators, expressions and

precedence, Expression evaluation, Storage classes (auto, extern, static and register), type conversion,

The main method and command line arguments Bitwise operations: Bitwise AND, OR, XOR and NOT

operators Conditional Branching and Loops: Writing and evaluation of conditionals and consequent

branching with if, if-else, switch-case, ternary operator, goto, Iteration with for, while, do- while loops

I/O: Simple input and output with scanf and printf, formatted I/O, Introduction to stdin, stdout and stderr.

Command line arguments

UNIT - II: Arrays, Strings, Structures and Pointers:

Arrays: one and two dimensional arrays, creating, accessing and manipulating elements of arrays

Strings: Introduction to strings, handling strings as array of characters, basic string functions available

in C (strlen, strcat, strcpy, strstr etc.), arrays of strings

Structures: Defining structures, initializing structures, unions, Array of structures

Programming For Problem Solving

Pointers: Idea of pointers, Defining pointers, Pointers to Arrays and Structures, Use of Pointers in self-

referential structures, usage of self referential structures in linked list (no implementation) Enumeration

data type

UNIT - III: Preprocessor and File handling in C:

Preprocessor: Commonly used Preprocessor commands like include, define, undef, if, ifdef, ifndef

Files: Text and Binary files, Creating and Reading and writing text and binary files, Appending data to

existing files, Writing and reading structures using binary files, Random access using fseek, ftell and

rewind functions.

UNIT - IV: Function and Dynamic Memory Allocation:

Functions: Designing structured programs, Declaring a function, Signature of a function, Parameters

and return type of a function, passing parameters to functions, call by value, Passing arrays to functions,

passing pointers to functions, idea of call by reference, Some C standard functions and libraries

Recursion: Simple programs, such as Finding Factorial, Fibonacci series etc., Limitations of Recursive

functions Dynamic memory allocation: Allocating and freeing memory, Allocating memory for arrays of

different data types

UNIT - V: Searching and Sorting:

Basic searching in an array of elements (linear and binary search techniques), Basic algorithms to sort

array of elements (Bubble, Insertion and Selection sort algorithms), Basic concept of order of complexity

through the example programs

TEXT BOOKS:

1. Jeri R. Hanly and Elliot B.Koffman, Problem solving and Program Design in C 7th Edition,
Pearson

2. B.A. Forouzan and R.F. Gilberg C Programming and Data Structures, Cengage Learning, (3rd

Edition)

REFERENCE BOOKS:

1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of
India

2. E. Balagurusamy, Computer fundamentals and C, 2nd Edition, McGraw-Hill
3. Yashavant Kanetkar, Let Us C, 18th Edition, BPB
4. R.G. Dromey, How to solve it by Computer, Pearson (16th Impression)

5. Programming in C, Stephen G. Kochan, Fourth Edition, Pearson Education.

6. Herbert Schildt, C: The Complete Reference, Mc Graw Hill, 4th Edition

 7. Byron Gottfried, Schaum’s Outline of Programming with C, McGraw-Hill

Programming For Problem Solving

UNIT -1

COMPUTER :

It is a high speed electronic device that accepts and stores input data and instructions, processes

the data and produces the desired output.

Input Output

 (raw data / Instructions) (Information i.e. processed

data)

Characteristics of computers

 Speed: the computer process data at an extremely fast rate, at millions of instructions

per second.

 Reliability: computer provide very high speed accompanied by an equally high level of

reliability.

 Accuracy: the level of accuracy depends on the instrucations and the type of processor

used in the computer

 Storage capacity: computers are capable of storing enormous amounts of data that can

be located and retrieved very quickly

 Resource sharing: In organizations computers can be connected to each other to from a

n/w

COMPUTER SYSTEMS

* It is made up of 2 major components

* They are : 1) Hardware

 2) Software

Computer Hardware :

 These are the physical components of a computer

 It consists of 5 Parts

1) Input Devices 2) Output Devices 3) CPU 4) Primary Storage 5) Secondary Storage

Programming For Problem Solving

Block diagram of a Computer

Input Devices

 These are used to enter data and programs into the computer

 These are for man to machine communication

 egs: Keyboard, mouse, scanner, touch screen, audio input.

Output Devices

 These are used to get the desired output from the computer

 These are for machine to man communication

 egs: Printer, Monitor, Speakers

 If the output is shown on monitor then it is called “Soft copy”

 If the output is printed on a paper using printer then it is called “hard copy”

CPU (Central Processing Unit)

 It is responsible for processing the instructions

 It consists of 3 parts

1) ALU – Arithmetic & Logic Unit

2) CU- Control Unit

3) Memory

 ALU performs arithmetic operations like addition,subtraction,multiplication,division and

logical operations like comparisons among data

 CU is responsible for movement of data inside the system

Input

Devices

Output

Devices

Secondary Memory

ALU CU

Primary Memory

Programming For Problem Solving

 Memory is used for storage of data and programs. It is divided into 2 parts.

1) Primary Memory/ Main Memory

2) Secondary Memory/ Auxilary Memory

1) Primary Memory

 It is also called main memory

 Data is stored temporarily i.e. data gets erased when computer is turned off

 Eg: RAM

2) Secondary Memory

 It is also called as auxilary memory

 Data is stored permanently so that user can reuse the data even after power loss.

 Eg: Hard disk, CD, DVD, Floppy etc.

Operating System

 It acts as an interface between the user and the hardware

 It makes the system to operate in an efficient manner

 Egs: MS DOS, Windows, UNIX, LINUX, etc.

System Support

 They provide some utilities and other operating services

 eg: Sort utilities, disk formatting utilities, Security monitors

COMPUTER LANGUAGES

 Computer programming languages are used to give instructions to the computer in a

language which computer understands

 Computer languages are classified into 3 types

1) Machine languages

2) Symbolic languages

3) High level languages

1) Machine languages

 Computer is a machine and since its memory can store only 1‟s and 0‟s, instructions must

be given to the computer in streams of 1‟s and 0‟s i.e. binary code.

 These are easily understandable by the machine

Programming For Problem Solving

 Programs written in binary code can be directly fed to computer for execution and it is

known as machine language.

Advantage :

 Execution is very fast since there is no need of conversion

Disadvantage :

 Writing and reading programs in machine language is very difficult

 Machine instructions are difficult to remember

2) Symbolic Languages

 It is also called as assembly language

 An assembly program contains “Mnemonics”

 “Mnemonic” means information can be memorized easily and is generally in the form of

abbreviations.

Advantage :

 Easy to read and write programs in assembly language when compared to machine

language

 Mnemonics are easy to remember

Disadvantage :

 Assembly programs are machine dependent

 Execution is slow since it needs conversion into machine language

 “Assembler” is used to convert assembly language program into machine language.

Assembly language program Machine Language

code

3) High level languages

 A set of languages which are very close to our native languages are called “ high-level

languages”.

 High level languages have control structures, I/O facilities, hardware independence

 eg: FORTRAN, COBOL, PASCAL, C, C++ etc..

Advantage :

 Machine independence i.e. programs are “Portable” i.e. programs can be moved from one

system to another

Assembler

Programming For Problem Solving

 Easy to learn and understand

 Takes less time to write programs

Disadvantage :

 High level language programs needs a translator for conversion into machine language

 „Compilers‟ (or) „Interpreters‟ are used for converting high level language program into

machine language..

High level language program Machine Language code

 Compiler converts entire statements in the program at a time.

 Interpreter converts one statement at a time.

CREATING AND RUNNING PROGRAMS

 Program consists of set of instructions written in a programming language

 The job of a programmer is to write and test the program.

 There are 4 steps for converting a „C‟ program into machine language.

1) Writing and editing the program

2) Compiling the program

3) Linking the program

4) Executing the program

1) Writing and editing the program

 „Text editors‟ are used to write programs.

 Users can enter, change and store character data using text editors

 Special text editor is often included with a compiler

 After writing the program, the file is saved to disk. It is known as „source file‟

 This file is input to the compiler

 C file

 Programmer Source file

Compiler /

Interpreter

Text Editor
#include<stdio.h>

main ()

{

}

Programming For Problem Solving

2) Compiling the program

 “Compiler” is a software that translates the source file into machine language

 The „C‟ compiler is actually 2 separate programs

 a) Preprocessor

 b) Translator

A) Preprocessor

 It reads the source code and prepares it for the translator

 It scans for special instructions known as „preprocessor‟ commands which start with „ #‟

symbol

 These commands tell the preprocessor to look for special code libraries and make

substitutions

 The result of preprocessing is called „translation‟ unit

Source File translation unit

B) Translator

 It does the actual work of converting the program into machine language

 It reads the translation unit and results in „object module‟ i.e., code in machine language

 But it is not yet executable because it does not have the „C‟ and other functions included.

Translation unit Object Module .obj file

3) Linking programs

 „Linker‟ assembles input /output functions, mathematical library functions and some of

the functions that are part of source program into final executable program

 It is called as executable file that it is ready for execution .exe file

Object file executable file

Preprocessor

Translator

00110 100

10101 010

Linker

1011001100

110111011

1100101010

Programming For Problem Solving

4) Executing Programs

 „Loader‟ is the software that gets the program that is ready for execution into the

memory

 When everything is loaded, the program takes control and the „Runner‟ begins its

execution.

 In the process of execution, the program reads the data from the user, processes the data

and prepares the output

SOFTWARE DEVELOPMENT METHOD

 Software is collection of programs

 Programming is a problem solving task / activity

 Programmers use the software development method for solving problems

 It consists of the following 6 phases

1) Requirements

2) Analysis

3) Design

4) Coding

5) Testing

6) Maintenance

1) Requirements

 Information about the problem must be stated clearly and unambiguously

Programming For Problem Solving

 Main objective of this phase is to eliminate unimportant aspects and identify the root

problem

2) Analysis

 It involves identifying the problem inputs, outputs, that the program must produce

 It also determines the required format in which results should be displayed

3) Design

 It involves designing algorithms, flowcharts (or) GUI‟s (Graphical User Interfaces)

 Designing the „algorithm‟ is to develop a list of steps called algorithm to solve the

problem and then verify that the algorithm solves the problem intended.

 “Top – down design” is followed i.e. list the major steps (or) sub problems that need to

be solved

 “Flow charts” are used to get the pictorial representation of the algorithm.

 Algorithm for a programming problem consists of at least the following sub problems

1. Get the data

2. Perform the computations

3. Display the results

4) Coding / Implementation

 This step involves writing algorithm as a program by selecting any one of the high – level

languages that is suitable for the problem.

 Each step of the algorithm is converted into one (or) more statements in a programming

language.

5) Testing

 Checking / verifying whether the completed program works as desired is called “

Testing”

 Running the program several times using different sets of data verifies whether a program

works correctly for every situation provided in the algorithm.

 After testing, the program must be free from the following errors.

a) Syntax errors

Programming For Problem Solving

b) Logical errors

c) Run-time errors

6) Maintenance

 It involves modifying a program to remove previously undetected errors and to keep

it up-to-date as government regulations (or) company polices change.

 Many organizations maintains a program for some period of time i.e. 5 years

 This is called „waterfall‟ model

 It is necessary to go back to the previous phase to rework it

APPLYING THE SOFTWARE DEVELOPMENT METHOD

1) Problem requirement

 Finding the roots of a quadratic equation, ax
2
+bx+c

 There will be 2 roots for such quadratic equation

2) Analysis

Input : a,b,c values

Output: r1, r2 values

Procedure :
2

1

b b 4ac
r

2a

System

requirements

Analysis

Design

Coding

Testing

Maintenance

Programming For Problem Solving

3) Design

Algorithm

1. start

2. Read a,b,c values

3. Compute d = b
2

4ac

4. if d > 0 then

 a) r1 = b+ sqrt (d)/(2*a)

 b) r2 = b sqrt(d)/ (2*a)

5. otherwise if d = 0 then

 a) compute r1 = -b/2a

 r2=-b/2a

 b) print r1,r2 values

6. otherwise if d < 0 then print roots are imaginary

7. Stop

4. Implementation

include<stdio.h>

include<conio.h>

include<math.h>

main ()

{

float a,b,c,r1,r2,d;

clrscr ();

printf (“enter a,b,c values”);

scanf (“ %f %f %f”, &a, &b, &c);

d= b*b – 4*a*c;

if (d>0)

{

2

2

b b 4ac
r

2a

Programming For Problem Solving

r1 = -b+sqrt (d) / (2*a);

r2 = -b-sqrt (d) / (2*a);

printf (“Roots are real and are %f %f”, r1, r2);

}

else if (d= =0)

{

 r1 = -b/(2*a);

r2 = -b/(2*a);

printf (“Roots are equal and are %f %f”, r1, r2);

}

else

 printf(“Roots are imaginary”);

getch ();

}

5) Testing

Case 1: Enter a,b,c values : 1 4 3

 r1 = -1

 r2 = -3

Case 2: Enter a,b,c values : 1 2 1

 r1 = -1

 r2 = -1

Case 3: Enter a,b,c values : 1 1 4

 Roots are imaginary

ALGORITHM:

 It is a step – by – step procedure for solving a problem

 If algorithm is written in English like sentences then it is called as „PSEUDO CODE‟

Properties of an Algorithm

An algorithm must posses the following 5 properties. They are

1. Input

2. Output

Programming For Problem Solving

3. Finiteness

4. Definiteness

5. Effectiveness

1. Input : An algorithm must have zero (or) more number of inputs

2. Output: Algorithm must produce one (or) more number of outputs

3. Finiteness : An algorithm must terminate in countable number of steps

4. Definiteness: Each step of the algorithm must be stated clearly

5. Effectiveness: Each step of the algorithm must be easily convertible into program

statements

Example

Algorithm for finding the average of 3 numbers

1. start

2. Read 3 numbers a,b,c

3. Compute sum = a+b+c

4. compute avg = sum/3

5. Print avg value

6. Stop

FLOW CHART

Diagramatic representation of an algorithm is called flow chart

Advantages of flow chart

 It is very easy to understand because the reader follows the process quickly from the

flowchart instead of going through the text.

 It is the best way of representing the sequence of steps in an algorithm

 It gives a clear idea about the problem

 Various symbols are used for representing different operations

 Arrows are used for connecting the symbols and show the flow of execution

Programming For Problem Solving

Symbols used in flowchart:

Name Symbol Purpose

Terminal

oval

Start /stop/begin/end

Input / output

Parallelogram

Input/output of data

Process

Rectangle

Any processing to be

performed can be represented

Decision box

Diamond

Decision operations that

determine which of the

alternative paths to be

followed

Connector

Circle

Used to connect different

parts of flowchart

Flow

Arrows

Joins 2 symbols and also

represents flow of execution

Pre defined process

Double sided rectangle

Modules (or)subroutines

specified else where

Page connector

Pentagon

Used to connect flowchart in

2 different pages

For loop symbol

Hexagon

Shows initialization,

condition and incrementation

of loop variable.

Document

Printout

Shows the data that is ready

for printout

Programming For Problem Solving

Read 3 Numbers a,b,c

Print avg value

Example

Flowchart for finding the average of 3 numbers

Importance of ‟C‟ Language

1. It is a robust language, whose rich set of built-in functions and operations can be used to

write any complex program

2. It is a middle level language because the „C‟ compiler combines the capabilities of an

assembly language with the features of a high-level language and therefore it is well suited for

writing both system software and business packages.

3. „C‟ Programs are efficient and fast

4. C is highly portable, that is „C‟ programs written on one computer can be run on another with

little (or) no modification.

5. „C‟ Language is well suited for structured programming, thus requiring the user to think of a

problem in terms of function modules (or) blocks.

6. „C‟ program has the ability to extend itself.

Start

Compute sum a+b+c

Compute avg sum/3

Stop

Programming For Problem Solving

 It was named „C‟ because it is an offspring of BCPL (Basic Combined Programming

Language) which was popularly called „B‟ language.

General form of a „C‟ program

/* documentation section */

preprocessor directives

global declaration

main ()

{

 local declaration

 executable statements

}

returntype function name (argument list)

{

local declaration

 executable statements

}

Example:

/* Author : Ramu

 Aim : Program for finding circumference of circle*/

#include<stdio.h>

#include<conio.h>

#define PI 3.1415

main ()

{

float c, r;

 clrscr ();

 printf (“enter radius of circle”);

 scanf (“%f”, &r);

 c = 2 * PI * r;

Programming For Problem Solving

 printf (“Circumference = %f”, c);

 getch ();

}

„C‟ LANGUAGE ELEMENTS

„C‟ program contains several elements which are present in structure of „C‟ program. They are

1) Comment lines

2) Preprocessor directives

3) Variable declaration & data types

4) Executable statements

1. Comment lines

 In „C‟, comment lines are placed in “ /* */”

 Single line and multiple lines are enclosed in /* and */

 Comment lines are ignored by the compiler

 The documentation section is enclosed in comment lines

 Documentation section consists of a set of comment lines giving the name of the

program, the author and other details, which the programmer would like to use later.

2. Preprocessor directives

 It consists of a) link section

 b) Definition Section

 The link section provides instructions to the compiler to link functions from the system

library

 eg : #include < stdio.h>

 The definition section defines all symbolic constants

 eg : #define PI 3.1415

 Preprocessor directive must start with „#‟ (hash) symbol.

3. Variable declaration & data types

 Variable

 It is the name given to a memory location that may be used to store a data value

 A variable may take different values at different times during execution

Programming For Problem Solving

 A variable name may be chosen by the programmer in a meaningful way so as to reflect

its function (or) nature in the program

Eg: sum, avg , total etc.

Rules for naming a variable

1) They must begin with a letter

2) The length of the variable must not exceed 31 characters in ANSI standard. But first eight

characters are treated as significant by many compilers

3) Upper and lowercase characters are different

Eg: total, TOTAL, Total are 3 different variables

4) The variable name should not be a keyword

5) White space is not allowed

Data Types

 Data type specifies the set of values and the type of data that can be stored in a variable.

 They allow the programmer to select the type appropriate to the needs of application.

Types :

1) Primary data types

2) Derived data types

1. Primary data types

„C‟ compilers support 4 fundamental data types

 They are

1) integer

2) character

3) Floating – point

4) Double precision floating point

Programming For Problem Solving

PRIMRARY DATA TYPES

Integral Type

1. Integral data type

 Integral data types are used to store whole numbers and characters

 It is further classified into

a) integer data type

b) character data type

a) Integer data type

 This data type is used to store whole numbers

 It has 3 classes of integer storage namely, short int, int and long int in both signed and

unsigned forms

Integer

Signed Unsigned

int

short int

long int

unsigned int

unsigned short int

unsigned long int

character

signed char

unsigned char

Floating point type

float double long double

Integer Data type

Type size (in bytes) Range Control string

Short int (or)

signed short int

1 -128 to 127 % h

Unsigned short int 1 0 to 255 % uh

int (or) signed int 2 -32768 to 32767 % d or %i

unsigned int 2 0 to 65535 % u

Long int (or)

signed long int

4 -2147483648 to

2147483647

%ld

Unsigned long int 4 0 to 4294967295 %lu

Programming For Problem Solving

b) character data type

 This data type is used to store characters

 These characters are internally stored as integers

 Each character has an equivalent ASCII value

 eg: „A‟ has ASCII value 65

2. Floating – point Data types

 It is used to store real numbers (i.e., decimal point numbers).

 For 6 digits of accuracy, „float‟ is used.

 For 12 digits of accuracy, „double' is used.

 For more than 12 digits of accuracy, „long double‟ is used..

Variable declaration

Syntax:

 Datatype v1,v2,… vn;

Where v1, v2,...vn are names of variables

eg: int sum;

 float a,b;

 Variable can be declared in 2 ways

1. local declaration

2. global declaration

Character data type

Type Size (in bytes) Range Control string

Char (or) signed

char

1 - 128 to +127 %c

Unsigned char 1 0 to 255 %c

Floating point data type

Type Size (in bytes) Range Control string

float 4 3.4 E – 38 to 3.4 E + 38 %f

double 8 1.7 E – 308 to 1.7 E +308 %lf

long double 10 3.4 E – 4932 to 1.1 E +4932 %Lf

Programming For Problem Solving

 „local declaration‟ is declaring a variable inside the main block and its value is available

within that block

 „global declaration‟ is declaring a variable outside the main block and its value is available

through out the program.

 Eg :

 int a, b; /* global declaration*/

 main ()

 {

 int c; /* local declaration*/

 - - -

 }

EXECUTABLE STATEMENTS:

 A „C‟ program contains executable statements

 The „C‟ compiler translates the executable statements into machine language

 The machine language versions of these statements are executed by the compiler when a

user runs program

Types

1) Input – output statements

2) Assignment statements

1. Input – output statements

 Storing a value into memory is called „ input operation‟.

 After executing the computations, the results are stored in memory and the results can be

displayed to the user by „output operation‟

 All input / output operations in „C‟ are performed using input / output functions

 The most common I/O functions are supplied as part of the „C‟ standard I/O library

through the preprocessor directive # include<stdio.h>

 Most commonly used I/O functions are

a) printf ()

b) scanf ()

a) printf () function:

Programming For Problem Solving

 Syntax:

 printf(“format string”, print list);

 e.g.: printf (“average of 3 numbers = %f”,avg);

 * The printf () function displays the value of its format string after substituting the

values of the expressions in the print list.

 * It also replaces the escape sequences such as „\n‟ by their meanings.

b) scanf () function

 Syntax:

 scanf (“format string”, input list);

 e.g.: scanf (“%d %f”, &a, &b);

 The scanf () function copies into memory data typed at the keyboard by the program user

during program execution.

 The input list must be preceded by ampersand (&)

2) Assignment statements

 The assignment statements stores a value (or) a computational result in a variable and is

used to perform most arithmetic operations in a program.

 Syntax: variable=expression

 e.g.:

1. c = a+b;

2. avg = sum/3;

3. r1 = (b*b – 4 * a*c);

 The variable before the assignment operator is assigned the value of the expression after

it.

 The previous value of variable is destroyed

EXPRESSIONS

 Def: An expression is a combination of operators and operands which reduces to a single

value

 An operand is a data item on which an operation is performed.

 An operator indicates an operation to be performed on data

Programming For Problem Solving

 eg; z = 3+2*1

 z = 5

Types

1. Primary expressions

The operand in the primary expression can be a name, a constant or any parenthesized expression

 E.g.: c = a+ (5*b);

2. Postfix expressions:

The operator will be after the operands in a postfix expression

Eg:

ab+

3. Prefix expressions

The operator is before the operand in a prefix expression.

Eg:

+ab

4. unary expression:

It contains one operator and one operand

eg: a++, --b

5. Binary expression

It contains 2 operands and one operator

 Eg: a+b, c-d

6. Ternary expression

It contains 3 operands and one operator

Eg ; Exp1? Exp2 :Exp3

 If Exp1 is true ,Exp2 is executed. otherwise Exp3 is executed.

Expression

Primary Postfix prefix unary binary ternary

Programming For Problem Solving

OPERATORS AND EXPRESSIONS

 Operator performs an operation on data

 Operators are classified into

1. Arithmetic operators.

2. Relational operators.

3. Logical operators.

4. Assignment operators.

5. Increment and decrement operators.

6. Bitwise operators.

7. Conditional operators.

8. Special operators.

1). Arithmetic operator

 These operators are used for numerical calculations (or) to perform arithmetic operations

like addition, subtraction etc.

 Program:

main ()

{

 int a= 20, b = 10;

 printf (“ %d”, a+b);

printf (“ %d”, a-b);

Operator Description Example a =20, b=10 output

+ Addition a+b 20+10 30

- Subtraction a-b 20-10 10

* Multiplication a*b 20*10 200

/ Division a/b 20/10 2 (quotient)

% Modular division a%b 20%10 0 (remainder)

 Output

 30

 10

 200

 2

 0

Programming For Problem Solving

printf (“ %d”, a*b);

printf (“ %d”, a/b);

printf (“ %d”, a%b);

}

2).Relational operators :

 These are used for comparing two expressions.

 The output of a relational expression is either true (1) (or) false (0)

 Program

main ()

{

 int a= 10, b = 20;

 printf (“ %d”, a<b);

printf (“ %d”, a<=b);

printf (“ %d”, a>b);

printf (“ %d”, a>=b);

printf (“ %d”, a = =b);

printf (“ %d”, a ! =b);

}

3. Logical Operators

 These are used to combine 2 (or) more expressions logically

Operator Description Examble a =10, b=20 output

< less than a<b 10<20 1

<= less than (or)

equal to

a<=b 10< = 20 1

> greater than a>b 10>20 0

>= greater than (or)

equal to

a>=b 10> =20 0

= = equal to a= =b 10 = = 20 0

! = not equal to a! = b 10 ! =20 1

 Output

 1

 1

 0

 0

 0

 1

1

1

Programming For Problem Solving

 They are logical AND (&&) logical OR (||) and logical NOT (!)

Logical AND (&&)

Logical OR(||)

Logical NOT (!)

Program:

main ()

{

 int a= 10, b = 20, c= 30;

 printf (“ %d”, (a>b) && (a<c));

printf (“ %d”, (a>b) | | (a<c));

exp1 exp2 exp1&&exp2

T T T

T F F

F T F

F F F

exp1 exp2 exp1||exp2

T T T

T F T

F T T

F F F

exp !(exp)

T F

F T

Operator Description Example a =10, b=20,c=30 output

&& logical AND (a>b) && (a<c) (10>20) & & (10<30) 0

|| logical OR (a>b) | | (a<c) (10>20) ||(10<30) 1

! logical NOT ! (a>b) ! (10>20) 1

 Output

 0

 1

 1

Programming For Problem Solving

printf (“ %d”, ! (a>b));

}

4. Assignment operators

 It is used to assign a value to a variable

Types

1) simple assignment 2)compound assignment

Program:

main ()

{ int a= 10,;

 printf (“ %d”, a);

printf (“ %d”, a+ =10);

}

5. Increment and decrement operator:

a) Increment operator (++):

 It is used to increment the value of a variable by 1

 2 types : i) pre increment

 ii) post increment

 increment operator is placed before the operand in preincrement and the value is first

incremented and then operation is performed on it.

 eg: z = ++a; a= a+1

 z=a

 increment operator is placed after the operand in post increment and the value is

incremented after the operation is performed

 eg: z = a++; z=a
 a= a+1

Program

Operator Description Example

= Simple

assignment

a=10

+ =, - =,

* =, / =, %=

Compound

assignment

a+=10 a=a+10

a-=10 a=a-10

Output

10

20

Output

 z=11

main ()

{

 int a= 10, z;

 z= a++;

printf (“z= %d”, z);

printf (“a=%d”, a);

Output

 z=10

Programming For Problem Solving

main ()

{

 int a= 10, z;

 z= ++a ;

 printf (“z= %d”, z);

printf (“ a=%d”, a);

}

b) Decrement operator : (- -)

 It is used to decrement the values of a variable by 1

 2 types : i) pre decrement

 ii) post decrement

 decrement operator is placed before the operand in predecrement and the value is first

decremented and then operation is performed on it.

eg: z = - - a; a= a-1

 z=a

 decrement operator is placed after the operand in post decrement and the value is

decremented after the operation is performed

eg: z = a--; z=a
 a= a-1

Program:

main ()

{

 int a= 10, z;

 z= --a;

 printf (“z= %d”, z);

printf (“ a=%d”, a);

}

Output

 z=9

 a =9

main ()

{

 int a= 10, z;

 z= a--;

printf (“z= %d”, z);

printf (“a=%d”, a);

}

Output

 z=10

 a = 9

Programming For Problem Solving

6. Bitwise Operator

Unlike other operators, bitwise operators operate on bits (i.e. on binary values of on operand)

eg: let a= 12, b=10

 a&b a | b

a&b = 8 a | b = 14

Operator Description

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

<< Left shift

>> Right shift

~ One‟s complement

Bitwise AND

a b a &b

0 0 0

0 1 0

1 0 0

1 1 1

Bitwise OR

a b a | b

0 0 0

0 1 1

1 0 1

1 1 1

Bitwise XOR

a b a ^b

0 0 0

0 1 1

1 0 1

1 1 0

 8 4 2 1

a =12 1 1 0 0

b =10 1 0 1 0

a &b 1 0 0 0

 8 4 2 1

a =12 1 1 0 0

b =10 1 0 1 0

a | b 1 1 1 0

 8 4 2 1

Programming For Problem Solving

 a ^ b

a ^ b = 6

Program

main ()

{

 int a= 12, b = 10;

 printf (“ %d”, a&b);

printf (“ %d”, a| b);

printf (“ %d”, a ^ b);

}

Left Shift

 If the value of a variable is left shifted one time, then its value gets doubled

 eg: a = 10 then a<<1 = 20

a=10

a<<1 Fill it with zero

 a<<1 = 20

Right shift

If the value of a variable is right shifted one time, then its value becomes half the original value

 eg: a = 10 then a>>1 = 5

a=10

a =12 1 1 0 0

b =10 1 0 1 0

a ^b 0 1 1 0

32 16 8 4 2 1

 1 0 1 0

 1 0 1 0 0

8 4 2 1

1 0 1 0

Output

 8

 14

 6

Programming For Problem Solving

a>>1 0 Discard it

a>>1 = 5

Ones complement

 It converts all ones to zeros and zeros to ones

 Eg: a = 5 then ~a=2 [only if 4 bits are considered]

a=5

~a

~a = 2

Program

main ()

{

 int a= 20, b = 10,c=10;

 printf (“ %d”, a<<1);

printf (“ %d”, b>>1);

printf (“ %d”, ~c);

}

Signed

 1‟s complement = - [give no +1]

 Eg : ~10 = - [10+1] = -11

 ~-10 = - [-10+1] = 9

unsigned

 1‟s complement = [65535 – given no]

7. Conditional operator (? :)

 It is also called ternary operator

 Syntax:

exp1 ? exp2 : exp3

 if exp1 is true exp2 is evaluated, otherwise exp3 is evaluated

 1 0 1

8 4 2 1

 1 0 1

 0 1 0

Output

 40

 5

 11

Programming For Problem Solving

 it can also be represented in if – else form

 if (exp1)

 exp2;

 else

 exp3;

Program

main ()

{ int z;

 z = (5>3) ? 1:0;

 printf (“%d”,z);

}

8) Special operations

 Some of the special operations are comma, ampersand(&), size of operators.

a) Comma: (,)

 It is used as separator for variables

eg; a=10, b=20

b) Address:(&)

 It is used to get the address of a variables.

c) Size of () ;

 It is used to get the size of a data type of a variable in bytes.

Program:

main ()

{

 int a=10;

 float b=20 ;

 printf (“ a= %d b=%f”, a,b);

 printf (“ Address of a =%u “ , &a) ;

 printf (“ Address of b =%u” ,&b) ;

 printf (“Size of a = %d ” , sizeof (a)) ;

 printf (“Size of b = %d ”, sizeof (b)) ;

} a b

Output

 1

 10 20.00

Programming For Problem Solving

Out Put :

a=10 b=20.00 1234 5678

Address of a =1 2 3 4

Address of b = 5 6 7 8 Only for this example

 Size of a = 2 bytes

 Size of b = 4 bytes

EXPRESSION EVALUATION, PRECEDENCE AND ASSOCIATIVITY

 Expressions are evaluated by the „C‟ compiler based on precedence and associativity

rules.

 If an expression contains different priority operators then precedence rules are

considered.

 Eg: C = 30 - 10 * 2

Here, 10*2 is evaluated first since „*‟ has more priority than „-„ and „=‟

 If an expression contains same priority then assoiciativity rules are considered i.e. left

right (or right to left)

eg: z= a*b/c

 z = 40 * 20 / 10 Here „*‟ and „/‟ have same priority so, left to

right associativity is

considered

1

2
20

3
10

1

2

3
80

800

z

Programming For Problem Solving

Eg: x =5 *4 + 8/2 x = 5 * 4 + 8 / 2

x = 24

Parenthesis has highest priority and comma has least priority among operators

Type Conversions

Converting one data type into another is the concept of type conversion

2 types

 1. Implicit type conversion

 2. Explicit type conversion

 Implicit type conversion is automatically done by the compiler by converting smaller data

type into a larger data type.

Eg: int i,x;

 float f;

 double d;

 long int l;

x = l / i + x - f - d

 long float

 long float

 float

 `

 Float

 Double

2

1

3

4

Programming For Problem Solving

int double

Here, the above expression finally evaluates to a‟double‟ value

Explicit type conversion is done by the user by using (type) operator

Eg: int a,c;

 float b;

 c = (int) a + b

 int float

 float

 int

Here, the resultant of „a+b‟ is converted into „int‟ explicitty and then assigned to „c‟

Program:

main ()

{

 printf (“%d”, 5/2);

printf (“%f”, 5.5/2);

printf (“%f”, (float) 5/2);

}

STORAGE CLASSES

There are 4 storage classes (or) storage class specifiers supported in „C‟ They are:

1) auto

2) extern

3) static

4) register

1. automatic variables / Local variables.

 Keyword : auto

 These are also called local variables

 Scope

o Scope of a local variable is available within the block in which they are declared.

Output

 2

 2.75

 2.5

Programming For Problem Solving

o These variables are declared inside a block

 Default value: garbage value

eg:

main ()

{

 auto int i=1;

 {

 auto int i=2;

 {

 auto int i=3;

 printf (“%d”,i)

 }

 printf(“%d”, i);

 }

printf(“%d”, i);

}

2. global Variables / external variables

 Keyword : extern

 These variables are declared outside the block and so they are also called global variables

 Scope:

 Scope of a global variable is available throughout the program.

 Default value: zero

eg:

 extern int i =1; /* this „i‟ is available throughout program */

 main ()

 {

 int i = 3; /* this „i' available only in main */

 printf (“%d”, i);

 fun ();

 }

Output

3

2

1

Output

3

1

Programming For Problem Solving

 fun ()

 {

 printf (“%d”, i);

 }

3) Static variables

 Keyword : static

 Scope

 Scope of a static variable is that it retains its value throughout the program and in

between function calls.

 Static variables are initialized only once.

o Default value: zero

eg:

main ()

{

 inc ();

 inc ();

inc ();

}

inc ()

{

 static int i =1;

 printf (“%d”, i);

 i++;

}

Output

1 2 3

4. Register variables

 Keyword : register

 Register variable values are stored in CPU registers rather than in memory where

normal variables are stored.

 Registers are temporary storage units in CPU

 They allow faster access time for register variables than normal variables

eg:

main ()

{

 inc ();

 inc ();

 inc ();

}

inc ()

{

auto int i=1;

printf (“%d”, i);

i++;

}

Output

1 1 1

Programming For Problem Solving

main ()

{

 register int i;

 for (i=1; i< =5; i++)

 printf (”%d ”,i);

}

Output

1 2 3 4 5

Scope rules

 Scope rules relate to the accessibility, period of existence and boundary of usage of

variables.

1) Scope rules related to statement Blocks :

 Block is set of statement enclosed in curly braces

 Variables declared in a block are accessible and usable within that block and doesnot

exist outside it

eg: main ()

 {

 {

 int i = 1;

 printf (“%d”,i);

 }

 {

 int j=2;

 printf(“%d”,j);

 }

 }

output

1 2

 Even if the variables are redeclared in their respective blocks and with the same name,

they are considered differently

main ()

„i' is available within this

block only

„j' is available within this

block only

Programming For Problem Solving

 {

 {

 int i = 1;

 printf (“%d”,i);

 }

 {

 int i =2;

 printf (“%d”,i);

 }

 }

Output

 1 2

 redeclaration of variables within the blocks bearing the same names as those in the outer

block masks the outer block variables while executing the inner blocks.

eg:

main ()

 {

 int i = 1;

 {

 int i = 2;

 printf (“%d”,i);

 }

 }

 Output : 2

 Variables declared outside the inner blocks are accessible to the nested blocks, provided

these variable are not declared within the inner block

main ()

 {

 int i = 1;

 {

 int j = 2;

/* Both i‟s are declared in different

blocks so, they are treated differently

even though they have same name */

/* inner block variable dominates

outer block variable with same name

*/

/* „i‟ is available within the inner

block also */

Programming For Problem Solving

 printf (“%d”,j);

 printf (“%d”,i);

}

 }

Output

2 1

2. Scope rules related to functions

 Function is a self contained block that performs a particular task.

 Variables declared within the function body are called local variables

 These variables only exist inside the specific function that creates them. They are

unknown to other functions and to the main functions also

 The existence of local variables ends when the function completes its specific task and

returns to the calling point.

eg:

main ()

{

 int a=10, b = 20;

 printf (“before swapping a=%d, b=%d”, a,b);

 swap (a,b);

 printf (“after swapping a=%d, b=%d”, a,b);

}

swap (int a, int b)

{

 int c;

 c=a;

 a=b;

 b=c;

}

Output:

 Before swapping a=10, b=20

 After swapping a = 10, b=20

Programming For Problem Solving

 Variables declared outside the function body are called global variables.

 These variables are accessible by any of the functions

eg:

include<stdio.h>

int a=10, b = 20;

main()

{

 printf (“before swapping a=%d, b=%d”, a,b);

 swap ();

 printf (“after swapping a=%d, b=%d”, a,b);

}

swap ()

{

 int c;

 c=a;

 a=b;

 b=c;

}

Output

 Before swapping a = 10, b =20

After swapping a = 20, b = 10

CONTROL STATEMENTS :

Decision statements :

These are used to make a decision among the alternative paths

They are

1. simple – if statement

2. if – else statement

Programming For Problem Solving

3. nested – if else statement

4. else – if ladder

5. switch statement

1. Simple – if statement

 „if‟ keyword is used to execute a set of statements when the logical condition is true

Syntax :

 if (condition)

 {

 Statement (s)

 }

Flow chart

 True False

Program /* checking whether a number is greater than 50 */

main ()

{

 int a;

 printf (“enter a number”);

scanf (“%d”, &a);

if (a>50)

 printf (“%d is greater than 50”, a);

}

Statement (s)

Cond

ition?

Programming For Problem Solving

Output

1) enter a number 60 2) enter a number 20

60 is greater than 50 no output.

2. if else statement

 If –else statement takes care of true as well as false conditions

 „true block‟ is executed when the condition is true and „false block‟ (or) „else block‟ is

executed when the condition is false.

Syntax:

 if (condition)

 {

 True block statement(s)

 }

 else

 {

 False block statement(s)

 }

Flow chart

 True False

Program

/* checking for even (or) odd number */

main ()

{

 int n;

True block

statement(s)

Cond

ition?

False block

statement (s)

Programming For Problem Solving

 printf (“enter a number”);

scanf (“%d”, &n);

if (n%2 ==0)

 printf (“%d is even number”, n);

else

 printf(“%d is odd number”, n);

}

Output

1) enter a number 10 2) enter a number 5

10 is even number 5 is odd number

3. Nested if - else statemen

 A „nested if‟ is an if statement that is the object of either if (or) an else

 „if‟ is placed inside another if (or) else

Syntax:

 if (condition1)

 {

if (condition2)

 stmt1;

 else

 stmt2;

}

 else

 {

 if (condition3)

 stmt3;

 else

 stmt4;

 }

Programming For Problem Solving

Flow chart

 True False

Program /* largest of 3 numbers */

main ()

{

 int a,b,c;

 printf (“enter 3 numbers”);

scanf (“%d%d%d”, &a, &b, &c);

if (a>b)

{ if (a>c)

 printf (“%d is largest”, a);

 else

 printf (“%d is largest”, c);

}

else

{

Cond

ition1

Stmt1

Condi

tion2

Stmt3 Stmt2 Stmt4

Cond

ition3
False True False True

Programming For Problem Solving

 if (b>c)

 printf (“%d is largest”, b);

 else

 printf (“%d is largest”, c);

}

}

Output

enter 3 numbers = 10 20 30

30 is largest

4. Else – if ladder

 This is the most general way of writing a multi-way decision

Syntax

if (condition1)

stmt1;

else if (condition2)

 stmt2;

 - - - - -

 - - - - -

 else if (condition n)

 stmtn;

 else

stmt x;

flow chart

 - - - - - -

Condi

tion2?

Stmt1

Condi

tion1?

Stmt2

Condit

ion n?

False True

True False

Programming For Problem Solving

Program /* finding roots of quadratic equation */

#include <math.h>

main ()

{

 int a,b,c,d;

 float r1, r2

 printf (“enter a,b,c values”);

scanf (“%d%d%d”, &a, &b, &c);

d= b*b – 4*a*c ;

if (d>0)

{

 r1 = (-b+sqrt(d)) / (2*a);

 r2 = (-b-sqrt(d)) / (2*a);

 printf (“root1 = %f, root2 == %f”, r1, r2);

}

else if (d= = 0)

{

 r1 = -b / (2*a);

 r2 = -b/ (2*a);

 printf (“root1 = %f, root2 = %f”, r1, r2);

}

else

Stmt n Stmt x

True False

Programming For Problem Solving

 printf ("roots are imaginary”);

}

Output

1) enter a,b, c values : 1 4 3

 Root 1 = -1

 Root 2 = -3

2) enter a,b, c values : 1 2 1

Root 1 = -1

Root 2 = -1

3) enter a,b, c values : 1 2 3

 roots are imaginary

5. Switch statement

 It is used to select one among multiple decisions

 „switch‟ successively tests a value against a list of integer (or) character constant.

 When a match is found, the statement (or) statements associated with that value are

executed.

Syntax

 switch (expression)

 {

 case value1 : stmt1;

 break;

 case value2 : stmt2;

 break;

 - - - - - -

 default : stmt – x;

 }

Programming For Problem Solving

Flow chart

 |

Program

main ()

{

 int n;

 printf (“enter a number”);

Switch

(expressi

on)

Stmt1

Stmt2

Exp =value1

Exp =value2

Stmt-x default

Programming For Problem Solving

scanf (“%d”, &n);

switch (n)

{

 case 0 : printf (“zero”)

 break;

case 1 : printf („one”);

 break;

 default : printf („wrong choice”);

}

}

Output

enter a number

1

one

Loop control statements

 These are used to repeat set of statements

 They are

1) for loop

2) while loop

3) do-while loop

1) for loop

Syntax

 for (initialization ; condition ; increment / decrement)

 {

 body of the loop

 }

Flow chart

Body of the loop

Increment/

decrement

Initialization

condition

True

False

Programming For Problem Solving

 for statement contains 3 parts

i) initialization is usually an assignment statement that is used to set the loop control

variable

ii) The condition is a relational expression that determines when the loop will exit.

iii) The increment/decrement part defines how the loop control variable will change each

time loop is repeated.

iv) loop continues to execute as long as the condition is true.

v) Once the condition is false, program continues with the next statement after for loop.

Program

main()

{

 int k;

 for (k = 1; k<=s; k++)

 {

 printf (”%d”,k);

 }

}

2) while loop

Syntax

 while (condition)

 {

 body of the loop

 }

Output

1

2

3

4

5

Programming For Problem Solving

Flow chart

 Intialization is done before the loop

 Loop continues as long as the condition is true

 Incrementation and decrementation part is done within the loop

Program

main()

{

 int k;

 k = 1;

 while (k< = 5)

 {

 printf (”%d”,k);

 k++;

 }

}

3) do-while loop

Syntax

 Initialization

do

 {

 body of the loop

Body of the loop

True

False Is

expression?

initialization

Incr/ dec

Output

1

2

3

4

5

Programming For Problem Solving

 inc/ dec

} while (condition);

Flow chart

Program

main()

 {

 int k;

 k = 1;

 do

 {

 printf (”%d”,k);

 k++;

} while (k <= 5);

 }

Nested for loops

Body of the loop

Is

expression?

initialization

Incr/ dec

Output

1

2

3

4

5

True

Programming For Problem Solving

 In nested for loops one (or) more for statements are included in the body of the loop

 The number of iterations in this type of structure will be equal to number of iterations in

the outer loop multiplied by the number of iterations in the inner loop

Program

main()

{

 int i,j;

 for (i=1; i<=2; i++)

 {

 for (j=1;j<=2; j++)

{

printf (”%d”, i*j);

 }

 }

 }

Execution i*j

i=1 j=1 1

 j=2 2

i=2 j=1 2

 j=2 4

i=3 j=1 3

 j=2 6

Other related statements

1) break

2) continue

3) goto

1) break

 It is a keyword used to terminate the loop (or) exit from the block

 The control jumps to next statement after the loop (or) block

 „break is used with for, while, do-while and switch statement

 When break is used in nested loops then only the innermost loop is terminated

Syntax

 { Stmt1;

 Stmt2;

Output

1

2

2

4

3

6

Programming For Problem Solving

 break;

 Stmt3;

 Stmt4;

 }

Program

main()

{ int i;

 for (i=1; i<=5; i++)

 {

printf (”%d”, i);

 if (i= =3)

break;

 }

 }

2) continue

 It is a keyword used for continuing the next iteration of the loop

 It skips the statements after the continue statement

 It is used with for, while and do-while

Syntax

 {

 Stmt1;

 Stmt2;

 continue;

 Stmt3;

 Stmt4;

 }

Program

main()

{

 int i;

Output

1

2

3

Output

1

3

4

5

Programming For Problem Solving

 for (i=1; i<=5; i++)

{

 if (i= =2)

continue,

printf(“%d”, i)

}

}

3) goto

 It is used to after the normal sequence of program execution by transferring the control to

some other part of program

Syntax

goto label; label :stmt

 ---- ----

 ---- ----

 ---- ----

label : stmt goto label;

Program

main()

{

 printf(‟Hello”);

 goto l1;

 printf(”How are”);

 l1: printf(”you”);

 }

 Command line arguments :

 An executable program that performs a specific task for operating system is called as

command

 These commands are issued from the prompt of operating system.

 Some arguments are to be associated with the commands and hence these are called “

command” line arguments. They are

Output

Hello

you

Forward jump backward jump

Programming For Problem Solving

1) argc ----- argument count

2) argv ----- argument vector

argc : it contains the total number of arguments passed from command prompt

argv : it is a pointer to an array of character strings which contains names of arguments. Each

word is an argument

for eg :

 c: |> sample. Exe hello how are you

 arguments

Here, argc = 5

 argv[0] = sample.exe argv[3] = are

 argv[1] = hello argv[4] = you

 argv [2] = how

Program

Program for calling a function using pointer to function

Program

main ()

{

 int (*p) ();

 clrscr ();

 p = display;

 *(p) ();

 getch ();

}

display ()

{

 printf(“Hello”);

}

Output

Hello

main ()

{

 clrscr ();

 display ();

 getch();

}

display ()

{

 printf (“Hello”);

}

Programming For Problem Solving

ARRAYS

 Array: An array is a group of related data items that share a common name

 (or) Homogenous collection of data items that share a common name.

 A particular value in an array is identified using its “index number” or “subscript”

Advantage

 The ability to use a single name to represent a collection of items and to refer to an item

by specifying the item number enables the user to develop concise and efficient programs

Declaring for declaring array

Syntax : for declaring array:

Eg:

1. float height [50]

This declares „height‟ to be an array containing 50 float elements

2. int group[10]

 This declares the „group‟ as an array to contain a maximum of 10 integer constants

 Individual elements are identified using “ array subscripts”

 While complete set of values are referred to as an array, individual values are called

“elements”

Eg: To represent a set of 5 numbers by an array, it can be declared as follows

 int a[5];

 Then computer reserves 5 storage locations each of 2 bytes.

 a[0]

 a[1]

 a[2]

 a[3]

 a[4]

 First element is identified by subscript „zero‟ i.e., a[0] represents first element of the

array.

 If there are „n‟ elements in array then subscripts range from 0 to n-1

datatype array_name [size];

Programming For Problem Solving

Initialization

To store values into an array it can be done as follows.

a[0] = 10; 10 a[0]

a[1] = 20; 20 a[1]

a[2] = 30; 30 a[2]

a[3] = 40; 40 a[3]

a[4] = 50; 50 a[4]

An array can also be initialized at the time of declaration as follows

 int a[5] = { 10,20,30,40,50};

Types of arrays

Arrays are broadly classified into 3 types. They are

1) one – dimensional arrays

2) two – dimensional arrays

3) Multi – dimensional arrays

1. one – dimensional arrays

Syntax: datatype array name [size];

Eg: int a[5];

Initialization;

An array can be initialized in 2 ways.

a) compile time initialization

b) Runtime initialization

Program for compile time initialization and sequential access using for loop

main ()

a[0] 10

a[1] 20

a[2] 30

a[3] 40

storing

{

 Int a=

10, z;

 z= a++;

printf

(“z= %d”, z);

printf

(“a=%d”, a);

}

Programming For Problem Solving

{

 int a[5] = {10,20,30,40,50};

 int i;

 clrscr ();

 printf (“elements of the array are”);

 for (i=0; i<5; i++)

 printf (“%d, a[i]);

 getch ();

}

Output: Elements of the array are

 10 20 30 40 50

Program for runtime initialization and sequential access using for loop

main ()

{

 int a[5],i;

 clrscr ();

 printf (“enter 5 elements”);

 for (i=0; i<5; i++)

 scanf(”%d”, &a[i]);

 printf(“elements of the array are”);

for (i=0; i<5; i++)

 printf(”%d ”, a[i]);

getch ();

}

output

 enter 5 elements 10 20 30 40 50

 elements of the array are : 10 20 30 40 50

Note :

 The output of compile time initialized program will not change during different runs of the

program

a[4] 50

accessing

{

 Int a=

10, z;

 z= a++;

printf

(“z= %d”, z);

printf

(“a=%d”, a);

}

Storing / assigning values to element of an

array

Accessing the elements of the aray

Programming For Problem Solving

 The output of run time initialized program will change for different runs because user is

given a chance of accepting different values during execution.

2. Two – dimensional arrays

 These are used in situations where a table of values have to be stored (or) in matrices

applications

 Syntax :

datatype array_ name [rowsize] [column size];

 Eg: int a[5] [5];

 No of elements in array = rowsize *columnsize = 5*5 = 25

Initialization :

Program for compile time initialization and sequential access using nested for loop

main ()

{

 int a[3][3] = {10,20,30,40,50,60,70,80,90};

 int i,j;

clrscr ();

 printf (“elements of the array are”);

 for (i=0; i<3; i++)

 {

 for (j=0;j<3; j++)

 {

 printf(“%d \t”, a[i] [j]);

 }

 printf(“\n”);

}

getch ();

}

output

 elements of the array are:

 10 20 30

 40 50 60

a[0] [0]

10

a[0] [1]

20

a[0] [2]

30

a[1] [0]

40

a[1] [1]

50

a[1] [2]

60

a[2] [0]

70

a[2] [1]

80

a[2] [2]

90

Programming For Problem Solving

 70 80 90

Program for runtime initialization and sequential access using nested for loop

main ()

{

 int a[3][3] ,i,j;

clrscr ();

 printf (“enter elements of array”);

 for (i=0; i<3; i++)

 {

 for (j=0;j<3; j++)

 {

 scanf(“%d ”, &a[i] [j]);

 }

 }

printf(“elements of the array are”);

for (i=0; i<3; i++)

 {

 for (j=0;j<3; j++)

 {

 printf(“%d\t ”, a[i] [j]);

 }

 printf(“\n”)

 }

 getch();

}

output

 Enter elements of array : 1 2 3 4 5 6 7 8 9

 Elements of the array are

 1 2 3

 4 5 6

 7 8 9

a[0] [0]

10

a[0] [1]

20

a[0] [2]

30

a[1] [0]

40

a[1] [1]

50

a[1] [2]

60

a[2] [0]

70

a[2] [1]

80

a[2] [2]

90

Programming For Problem Solving

3. Multi –dimensional arrays

 „C‟ allows arrays of 3 (or) more dimensions

 The exact limit is determined by compiler

Syntax:

 datatype arrayname [size1] [size2] ----- [sizen];

 eg: for 3 – dimensional array:

int a[3] [3] [3];

 No of elements = 3*3*3 = 27 elements

Program

main ()

{

 int a[2][2] [2] = {1,2,3,4,5,6,7,8};

 int i,j,k;

clrscr ();

 printf (“elements of the array are”);

 for (i=0; i<2; i++)

 {

 for (j=0;j<2; j++)

 {

 for (k=0;k<2; k++)

 {

 printf(“%d ”, a[i] [j] [k]);

 }

 }

}

 getch();

}

Output : Elements of the array are :

 1 2 3 4 5 6 7 8

Programming For Problem Solving

Arrays of pointers: (to strings)

 It is an array whose elements are pointers to the base address of the string

 It is declared and initialized as follows

 char *a[] = {“one”, “two”, “three”};

Here, a[0] is a pointer to the base address of the string “one”

 a[1] is a pointer to the base address of the string “two”

 a[2] is a pointer to the base address of the string “three”

 1234 1238 1242

Array of pointers

Advantage :

 Unlink the two dimensional array of characters. In (array of strings), in array of pointers

to strings there is no fixed memory size for storage.

 The strings occupy only as many bytes as required hence, there is no wastage of space.

Program

main ()

{

 char *a[5] = {“one”, “two”, “three”, “four”, “five”};

 int i;

 clrscr ();

 printf (“the strings are”)

for (i=0; i<5; i++)

o n e \0 t w o \0 t h r e e \0

a [0] 1234

a [1] 1238

a [2] 1242

Programming For Problem Solving

 printf (“%s”, a[i]);

 getch ();

}

Output

The strings are : one two three four five

STRINGS

Strings basics:

String : array of characters (or) collection of characters is called a string

Declaration :

 char stringname [size];

 eg: char a[50]; string of length 50 characters

Initialization

a) using single character constant:

 char a[10] = { „H‟, „e‟, „l‟, „l‟, „o‟ ,„\0‟}

„H‟ „e‟ „l‟ „l‟ „o‟ „\0‟

b) using string constants :

 char a[10] = “Hello”:;

„H‟ „e‟ „l‟ „l‟ „o‟ „\0‟

„\0‟ is called null character.

It marks the end of the string

„\0‟ is automatically placed by the compiler if a string constant is given as input.

User must take care of placing „\0‟ at the end if single character constants are given.

Accessing:

 There is a control string “%s” used for accessing the string till it encounters „\0‟

Program

main ()

{

 char a[10] = “Hello”;

 clrscr ();

 printf (“ given string is %s”,a)

Programming For Problem Solving

I/o functions

Input

scanf ()

gets ()

Output

printf ()

puts ()

 getch ();

}

Output : Given string is Hello

Input and output for strings

program : using printf () and scanf () for reading & writing strings.

main ()

{

 char a[30];

 printf(“enter your name”);

 scanf (“%s”,a);

 printf (“your name is %s”,a);

 getch ();

}

Output

1. Enter your name : Ramu 2. Enter your name : Ram kumar

Your name is Ramu Your name is Ram

Note :

1. „&‟ is not used for accepting string because name of the string itself specifies the base

address of the string

2. space is not accepted as a character by scanf()

3. „\0‟ is automatically placed by the compiler at the end.

Program : Using gets () and puts () for reading and writing strings.

main ()

{

 char a[30];

 printf (“enter your name”);

 gets (a);

 printf(“Your name is”);

Programming For Problem Solving

 puts (a);

}

Out put

1. Enter your Name : Ramu 2) Enter your name : Ram kumar

Your name is Ramu Your name is Ram kumar

Note : Space is also accepted as a character by gets ()

String Library functions

 There are some predefined functions designed for handling strings which are available in

the library “string.h”

They are :

1) strlen () 6. strcmp ()

2) strcpy () 7. strncmp ()

3) strncpy () 8. strrev ()

4) strcat () 9.strstr()

5) strncat ()

1). strlen ()

 This function gives the length of the string i.e. the number of characters in a

string.

Syntax:

int strlen (string name)

program

#include <string.h>

main ()

{

 char a[30] = “Hello”;

 int l;

 l = strlen (a);

 printf (“length of the string = %d”, l);

 getch ();

}

Output

Programming For Problem Solving

 length of the string = 5

Note : “\0” will not be counted as a character.

2). strcpy ()

 This function is used for copying source string into destination string

 The length of the destination string must be greater than (or) equal to that of the source

string

Syntax: strcpy (Destination string, Source String);

Eg:

1) char a[50]; 2) char a[50];

strcpy (“Hello”,a); strcpy (a,”hello”);

o/p: error o/p: a= “Hello”

program

#include <string.h>

main () a

{

 char a[50], b[50];

 clrscr ()

 b

 printf (“enter a source string”);

 scanf(“%s”, a);

 strcpy (b,a);

 printf (“copied string = %s”,b);

 getch ();

}

Output

 Enter a source string : Hello

Copied string = Hello

 3) strncpy ()

 This function is used for copying „n‟ characters of source string into destination string

H E l l O \0

H E l l O \0

Programming For Problem Solving

 The length of the destination string must be greater than (or) equal to that of the source

string

Syntax:

strncpy (Destination string, Source String, n);

program

#include <string.h>

main ()

a

{

 char a[50], b[50];

 clrscr () b

 printf (“enter a string”);

 gets (a);

 strncpy (b,a,3);

b[3] = „\0‟;

printf (“copied string = %s”,b);

 getch ();

}

Output

Enter a string : Hello

Copied string = Hel

 s1

It is also used for extracting substrings;

Eg: char result[10], s1[15] = “Jan 10 2010”;

strncpy (result, &s1[4], 2);

result[2] = „\0‟ result

o/p :Result = 10

4) strcat ():

H E l l o \o

H E l \o

J a n 1 0 2 0 1 0 \0

1 0 \o

Programming For Problem Solving

 This is used for combining or concatenating two strings.

 The length of the destination string must be greater than the source string

 The resultant concatenated string will be in the source string.

Syntax:

strcat (Destination String, Source string);

program

#include <string.h>

main()

{

char a[50] = “Hello”;

 char b[20] = “Good Morning”;

 clrscr ();

 strcat (a,b);

 printf(“concatenated string = %s”, a);

 getch ();

}

Output

 Concatenated string = Hello Good Morning

5) strncat ():

 This is used for combining or concatenating n characters of one string into another.

 The length of the destination string must be greater than the source string

 The resultant concatenated string will be in the source string.

Syntax:

strncat (Destination String, Source string,n);

program

#include <string.h>

main ()

{

 char a [30] = “Hello”;

char b [20] = “Good Morning”;

Programming For Problem Solving

 clrscr ();

 strncat (a,b,4);

 a [9] = „\0‟;

 printf(“concatenated string = %s”, a);

 getch ();

}

Output

 Concatenated string = Hello Good.

String comparison

6) strcmp

 This function compares 2 strings

 It returns the ASCII difference of the first two non – matching characters in both the

strings.

Syntax

 int strcmp (string1, string2);

If the difference is equal to zero string1 = string2

If the difference is positive string1> string2

If the difference is negative string1 <string2

eg:

1) char a[10]= “there”

char b[10] = “their”

strcmp (a,b);

Output: string1 >string2

 „r‟ > „i‟

2) char a[10]= “their”

char b[10] = “there”

strcmp (a,b);

t h e r e \0

t h e i r \0

t h e i r \0

t h e r e \0

Programming For Problem Solving

Output: string1 <string2

„i‟< „r‟

3) char a[10]= “there”

char b[10] = “there”

strcmp (a,b);

Output: string1 =string2

4) char a[10]= “there”

char b[10] = “the”

strcmp (a,b)

Output: string1 >string2

 „r‟ > „\0‟

5) char a[10]= “the”

char b[10] = “there”

strcmp (a,b);

Output: string1 <string2

 „\0‟ < „r‟

Program

main ()

{

 char a[50] b [50];

 int d;

 clrscr();

 printf (“enter 2 strings”);

 scanf (“%s %s”, a,b);

 d = strcmp (a,b);

 if (d==0)

 printf(“%s is equal to %s”, a,b);

 else if (d>0)

t h e r e \0

t h e r e \0

t h e r e \0

t h e \0

t h e \0

t h e r e \0

Programming For Problem Solving

 printf(“%s is greater than %s”,a,b);

 else if (d<0)

 printf(“%s is less than %s”, a,b);

 getch ();

}

7. strncmp ()

 This function is used for comparing first „n‟ characters of 2 strings

Syntax :

 strncmp (string1, string2, n)

Eg: char a[10] = “the”;

 char b[10] = “there”

strncmp (a,b,3);

Output : Both strings are equal

8. strrev()

 The function is used for reversing a string

 The reversed string will be stored in the same string

Syntax : strrev (string)

Program

main ()

{

 char a[50] ;

 clrscr();

 printf (“enter a string”);

 gets (a);

 strrev (a);

 printf(“reversed string = %s”,a)

 getch ();

}

Output : enter a string Hello

Programming For Problem Solving

 Reverse string = olleH

9.strstr():

 It is used to search whether a substring is present in the main string or not.

 It returns pointer to first occurrence of s2 in s1

Syntax : strstr(mainsring,substring);

Program

void main()

{

 char a[30],b[30];

 char *found;

 clrscr();

 printf("Enter a string:\t");

 gets(a);

 printf("Enter the string to be searched for:\t");

 gets(b);

 found=strstr(a,b);

if(found)

 printf("%s is found in %s in %d position",a,b,found-a);

 else

 printf("-1 since the string is not found");

 getch();

}

Output:

Enter a string: how are you

Enter the string to be searched for: you

you is found in 8 position

Programming For Problem Solving

STRUCTURES AND UNIONS

Introduction :

 Structure : It is a collection of different datatype variables, grouped together under a

single name. (or) It is heterogenous collection of data items that share a common name

Features of structure

1. It is possible to copy the contents of all structure elements of different datatypes to

another structure variable of its type using assignment operator

2. To handle complex datatypes, it is possible to create structure within another structure,

which is called nested structures.

3. It is possible to pass entire structure, individual elements of structure and address of

structure to a function

4. It is possible to create structure pointers

Declaration and initialization of structures.

General form of structure declaration

struct tagname

{

 datatype member1;

 datatype member2;

 datatype member n;

};

Here, struct - keyword

 tagname - specifies name of structure

 member1, member2 - - specifies the data items that make up structure.

Eg:

 struct book

 {

 int pages;

 char author [30];

 float price;

 };

Programming For Problem Solving

Structure variables

There are 3 ways of declaring structure variables

1) struct book

{

 int pages;

 char author[30];

 float price;

}b;

2) struct

{

 int pages;

 char author[30];

 float price;

}b;

3) struct book

{

 int pages;

 char author[30];

 float price;

};

struct book b;

Initialization and accessing of structures

 The link between a member and a structure variable is established using member operator

(or) dot operator

 Initialization can be done in the following ways

1. struct book

{

 int pages;

 char author[30];

 float price;

Note : Tagname can be ignored if the

variable is declared of the time of defining

structure

Programming For Problem Solving

} b = {100, “balu”, 325.75};

2. struct book

{

 int pages;

 char author[30];

 float price;

};

struct book b = {100, “balu”, 325.75};

3. using member operator

struct book

{

 int pages;

 char author[30];

 float price;

} ;

struct book b;

 b. pages = 100;

 strcpy (b.author, “balu”);

 b.price = 325.75;

4. using scanf ()

struct book

{

 int pages;

 char author[30];

 float price;

 } ;

struct book b;

 scanf (“%d”, &b.pages);

 scanf (“%s”, b.author);

 scanf (“%f”, &b. price);

 main ()

Programming For Problem Solving

{

 struct book b;

 clrscr ();

 printf (“enter no of pages, author, price of book”);

 scanf (“%d%s%f”, &b.pages, b.author, &b.price);

 printf(“ Details of book are”);

 printf(“pages =%d, author = %s, price = %f”, b.pages, b.author, b.price);

 getch();

}

Structure within structure (or) Nested structures

 Creating a structure inside another structure is called nested structure

 Consider the following example

struct emp

{

 int eno;

 char ename[30];

 float sal;

 float da;

 float hra;

 float ea;

}e;

 This is structure defines eno, ename, sal and 3 kinds of allowances. All the items related

to allowances can be grouped together and declared under a sub – structure as shown

below.

stuct emp

{

int eno;

char ename[30];

 float sal;

struct allowance

Programming For Problem Solving

 {

 float da;

 float hra;

 float ea;

 }a;

 }e;

 The inner most member in a nested structure can be accessed by changing all the

concerned structure variables (from outer most to inner most) with the member using dot

operator

Eg :

 e.eno; e.ename e.sal;

e.a.da; e.a.hra; e.a.ea;

Program

struct emp

{

int eno;

char ename[30];

float sal;

struct allowance

{

 float da;

 float hra;

 float ea;

 }a;

}e;

main ()

{

 clrscr ();

 printf(“enter eno, ename, salary”);

 scanf (“%d%s%f”, &e.eno, e.ename, &e.sal);

Programming For Problem Solving

 printf (“enter da, hra, ea, values”);

 scanf (“%f%f%f‟‟, &e.a.da, &e.a.hra, &e.a.ea);

 printf(“employee details are”)

 printf (“number = %d”, e.eno);

 printf (“name = %s”, e.ename);

 printf(“salary = %f”, e.sal);

 printf(“Dearness Allowance = %f”, e.a.da);

 printf (“House Rent Allowance = %f”, e.a.hra);

 printf(“City Allowance = %f”, e.a.ea);

 getch ()

}

Array of structures:

 The most common use of structure is array of structures

 To declare an array of structures, first the structure must be defined and then an array

variable of that type.

Eg: struct book b[10]; 10 elements in an array of structures of type „book‟

Program for accepting and printing details of 10 students

struct student

{

 int sno;

 char sname[30];

 float marks;

};

main ()

{

 struct student s[10];

 int i;

 clrscr ();

 for (i=0; i<10; i++)

 {

Programming For Problem Solving

 printf(“enter details of students%d”, i+1);

 scanf (“%d%s%f”, & s[i]. sno, s[i]. sname, &s[i].marks);

 }

 for (i=0; i<10; i++)

 {

 printf (“the details of student %d are”, i+1);

 printf (“Number = %d”, s[i]. sno);

 printf (“name = %s”, s[i]. sname);

 printf (“marks =%f”, s[i]. marks);

 }

 getch ();

}

Pointer to structure:

 It holds the address of the entire structure .

 Mainly these are used to create complex data structures such as linked lists, trees, graphs

and so on.

 The members of the structure can be accessed using a special operator called arrow

operator () .

Declaration

 struct tagname *ptr;

 eg; struct student *s;

Accessing ;

 ptr membername;

eg: ssno, ssname, smarks;

struct student

{

 int sno;

 char sname[30];

 float marks;

};

main ()

Programming For Problem Solving

{

 struct student s;

 struct student *st;

 clrscr ();

 printf(“enter sno, sname, marks”);

 scanf (“%d%s%f”, & s.sno, s.sname, &s. marks);

st = &s;

 printf (“details of the student are”);

 printf (“Number = %d”, st sno);

 printf (“name = %s”, stsname);

 printf (“marks =%f”, st marks);

 getch ();

}

Union

Def : A union is a memory location that is shared by several variables of different data types.

Syntax:

 union uniontag

 {

 datatype member 1;

 datatype member 2;

 datatype member n;

 };

Eg:

 union sample

 {

 int a;

 float b;

Programming For Problem Solving

 char c;

 };

Declaration of union variable

1) union sample

{

 int a;

 float b; 4bytes

 char c; s

 }s;

 a

2) union b

{ c

 int a;

 float b;

 char c;

 }s;

3) union sample

{

 int a;

 float b;

 char c;

 };

 union sample s;

 when a union is declared, the compiler automatically creates a variable large enough to

hold the largest variable type in the union.

 At any time only one variable can be referred.

Initialization and accessing

 To access a union member, the same syntax as that of the structure is used

 The dot operator is used for accessing members normally

Programming For Problem Solving

 The arrow operator () is used for accessing the members using pointer

program

union sample

{

 int a;

 float b;

 char c;

}

main ()

{

 union sample s = {10, 20.5, „A‟};

 clrscr();

 printf(“a=%d”,s.a);

 printf(“b=%f”,s.b);

 printf(“c=%c”,s.c);

getch ();

}

Output

a = garbage value

b = garbage value

c = A

Differences between structures and Unions

Structure Union

1. Definition

Structure is heterogenous collection of data

items grouped together under a single name

2. syntax;

struct tagname

{

1. Definition

A union is a memory location that is shared by

several variables of different datatypes.

2. syntax;

union tagname

{

Only the variable that is stored at last will

retain its value

Programming For Problem Solving

 datatype member1;

 datatype member2;

};

3. Eg:

 struct sample

 {

 int a;

 float b;

 char c;

 };

4. Keyword : struct

5. Memory allocation

 a

 b

 c

 7 bytes

6. Memory allocated is the sum of sizes of all

the datatypes in structure

(Here, 7bytes)

7. Memory is allocated for all the members of

the structure differently

 datatype member1;

 datatype member2;

};

3. Eg:

 union sample

 {

 int a;

 float b;

 char c;

 };

4. Keyword : union

5. Memory allocation

 a

 b

 c

 6. Memory allocated is the maximum size

allocated among all the datatypes in union

(Here, 4bytes)

7. Only one member will be residing in the

memory at any particular instance

4 bytes

2 bytes

4 bytes
 1 byte

Programming For Problem Solving

Union of structures

 A structure can be nested inside a union and it is called union of structures

 It is also possible to create a union inside a structure

Program

struct x

{

 int a;

 float b;

};

union z

{

 struct x s;

};

main ()

{

union z u;

clrscr ();

u.s.a = 10;

u.s.b = 30.5;

printf(“a=%d”, u.s.a);

printf(“b=%f”, u.s.b);

getch ();

}

Output

 a= 10

 b = 30.5

Typedef ;

 „C‟ allows to define new datatype names using the „typedef‟ keyword

 Using „typedef‟, user will not actually create a new datatype but define a new name for

an existing type.

Syntax :

Programming For Problem Solving

 typedef datatype newname;

eg :

 typedef int num; int a;

 num a;

 This statement tells the compiler to recognize „num‟ as another name for „int‟.

 „num‟ is used to create another variable „a‟ .

 „num a‟declares „a‟ as a variable of type „int‟.

Program

main ()

{

 typedef int hours;

 hours h;

 clrscr ();

 printf(“enter hours”);

 scanf (“%d”, &h);

 printf(“Minutes =%d”, h*60);

 printf(“Seconds = %d”, h*60*60);

 getch ();

}

Output : Enter hours =1

 Minutes = 60

 Seconds = 360

Example for typedefining a structure

typedef employee

{

 int eno;

 char ename[30];

 float sal;

} emp;

main ()

{

Programming For Problem Solving

 emp e = {10, “ramu”, 5000};

 clrscr();

 printf(“number = %d”, e.eno);

 printf(“name = %d”, e.ename);

 printf(“salary = %d”, e.sal);

 getch ();

}

Bit Fields

 These are used to change the order of allocation of memory from bytes to bits

 A bit field is a set of adjacent bits whose size can be from 1 to 16 bits in length

 There are occasions where data items require much less than 16 bits of space. In such

cases memory will be wasted. Bit fields can pack several data items in a word of memory

Syntax

 datatype name : bit – length;

 The datatype can be either int (or) unsigned int (or) signed int.

 Bit length specifies the number of bits

 The largest value that can be stored is 2
n
 – 1, where „n‟ is bit length

NOTE :

1) Bit fields cannot be arrayed

2) scanf () cannot be used to read values into bit fields

3) cannot use pointer to access the bit fields

4) Bit fields should be assigned values within the range of their size

Bit Length Range of values

1

2

3

n

0 to 1

0 to 3 (2
2
-1)

0 to 7 (2
3
-1)

0 to 2
n
-1

Eg:

1) struct pack

 {

 int count;

Programming For Problem Solving

 unsigned a : 2;

 unsigned b : 3;

 };

Here, count will be in 2 bytes. „a‟ and „b‟ will be packed into next 1 byte

2) struct pack

{

 unsigned a : 2;

 int count;

unsigned b : 3;

};

Here, „a‟ will be in 1 byte, „count‟ in 2 bytes and „b‟ in 1 bytes.

Note ;

1. Bit Fields are packed into words as they appear in the definition

2. All unsigned bit fields must be placed in order for effectively using the memory

Program

struct vehicle

{

 unsigned type : 3; Note: Instead of 6 bytes only 1 byte of

memory

 unsigned fuel : 2; will be allocated

 unsigned model : 3;

};

main ()

{

struct vehicle v;

 v.type = 4;

 v. fuel = 2;

 v. model = 5;

 printf (“type of vehicle =%d”, v.type);

 printf (“fuel =%d”, v.fuel);

Programming For Problem Solving

 printf (“model =%d”, v.model);

}

Enumerated Data type

 These are used by the programmers to create their own data types and define what values

the variables of these datatypes can hold.

Keyword : enum

Syntax :

 enum tagname

 {

 identifier1, identifier2,…….,identifier n

 };

eg :

 enum week

 {

 mon,tue, wed, thu, fri, sat, sun

 };

 Here, with identifier values are constant unsigned integers and start from 0.

 Mon refers 0, tue refers 1 and so on.

Program :

main ()

{

 enum week {mon, tue, wed, thu, fri, sat, sun};

 clrscr ();

 printf (“Monday = %d”, mon);

 printf (“Thursday = %d”, thu);

 printf (“Sunday = %d”, sun);

}

Output : Monday = 0

 Thursday =3

 Sunday =6

Programming For Problem Solving

 enum identifiers can also be assigned initial value.

Program

main ()

{

 enum week {mon=1, tue, wed, thu, fri, sat, sun};

 clrscr ();

 printf (“Monday = %d”, mon);

 printf (“Thursday = %d”, thu);

 printf (“Sunday = %d”, sun);

}

Output : Monday = 1

 Thursday =4

 Sunday =7

POINTERS

Pointer : Pointer is a variable that stores the address of another variable.

Features of Pointers

 Pointer saves the memory space

 Execution time with pointer is faster because data is manipulated with the address i.e.

direct access to memory location

 The memory is accessed efficiently with the pointer i.e. dynamically memory is allocated

and deallocated

 Pointers are used with data structures

Pointer declaration, initialization and accessing.

Consider the following statement :

 int qty = 179;

The representation of the variable in memory is as follows

qty Variable

179 value

5000 Address

Programming For Problem Solving

Declaring a pointer

It means „p‟ is a pointer variable that holds the address of another integer variable.

Initialization of a pointer

 Address operator (&) is used to initialize a pointer variable.

Eg: int qty = 175;

 int *p;

 p= &qty;

Accessing a variable through its pointer

 To access the value of the variable, indirection operator (*) is used.

eg :

„*‟ can be treated as value at address

 The 2 statements are equivalent to the following statement

 p = &qty;

 n = *p; n =qty

Program

main ()

int *p;

Variable value Address

qty 175 5000

p 5000 5048

int qty = 175, *p,n;

p = &qty;

n = *p;

Programming For Problem Solving

{

 int x,y;

 int *p;

 clrscr ();

 x= 10;

 p = &x;

 y= *p;

 printf (“Value of x = %d”, x);

 printf (“x is stored at address %u”, &x);

 printf (“Value of x using pointer = %d”, *p);

 printf (“address of x using pointer = %u”, p);

 printf (“value of x in y = %d”, y);

 *p = 25;

 printf (“now x = %d”, x)

 getch ();

}

Output

Value of x = 10

x is stored at address = 5000

Address of x using pointer = 10

Address of x using pointer = 5000

Value of x in y = 10

Now x = 25

Pointers and arrays

 Continuous memory locations are allocated for all the elements of the array by the

compiler

 The base address is the location of the first element (index 0) of the array.

Eg : int a [5] = {10, 20,30,40,50};

The five elements are stored as follows

Elements a[0] a[1] a[2] a[3] a[4]

Value 10 20 30 40 50

 x y

 10 25 10

 p 5000

Programming For Problem Solving

Address 1000 1002 1004 1006 1008

 base address

a= &a[0]=1000

if „p‟ is declared as integer pointer, then the array „a‟ can be pointed by the following assignment

 Every value of „a‟ can be accessed by using p++ to move from one element to another.

When a pointer is incremented, its value is increased by the size of the datatype that it

points to. This length is called the “scale factor”

 The relationship between „p‟ and „a‟ is shown below

P = &a[0] = 1000

P+1 = &a[1] = 1002

P+2 = &a[2] = 1004

P+3 = &a[3] = 1006

P+4 = &a[4] = 1008

 Address of an element is calculated using its index and the scale factor of the datatype.

For eg:

 instead of using array indexing, pointers can be used to access array elements.

 *(p+3) gives the value of a[3]

 a[i] = *(p+i)

p = a;

(or) p = &a[0];

Address of a[3] = base address + (3* scale factor of int)

 = 1000 + (3*2)

 = 1000 +6

 = 1006

Programming For Problem Solving

Program

main ()

{

 int a[5];

 int *p,i;

 clrscr ();

 printf (”Enter 5 lements”);

 for (i=0; i<5; i++)

 scanf (“%d”, &a[i]);

 p = &a[0];

 printf (“Elements of the array are”);

 for (i=0; i<5; i++)

 printf(“%d”, *(p+i));

 getch();

}

Output

Enter 5 elements : 10 20 30 40 50

Elements of the array are : 10 20 30 40 50

Array of pointers

 It is collection of addresses (or) collection of pointers

Declaration

 datatype *pointername [size];

eg: int *p[5]; It represents an array of pointers that can hold 5 integer element addresses

p[0] p[1] p[2] p[3] p[4]

Initialization

 „&‟ is used for initialization

Eg : int a[3] = {10,20,30};

 int *p[3], i;

 for (i=0; i<3; i++) (or) for (i=0; i<3,i++)

 p[i] = &a[i];

Programming For Problem Solving

p[i] = a+i;

Accessing

Indirection operator (*) is used for accessing

Eg: for (i=0, i<3; i++)

 printf (”%d”, *p[i]);

Program

main ()

{

int a[3] = {10,20,30};

 int *p[3],i;

 for (i=0; i<3; i++)

 p[i] = &a[i];

 printf (elements of the array are”)

 for (i=0; i<3; i++)

 printf (”%d \t”, *p[i]);

 getch();

}

Output elements at the array are : 10 20 30

Programming For Problem Solving

PREPROCESSOR COMMANDS & FILES

Preprocessor commands

 „preprocessor‟ is a program that processes the source code before it passes through the

compiler

 It operates under the control of preprocessor directives which begin with the symbol #

3 types

1) Macro substitution directives

2) File inclusion directives

3) compiler control directives

1) Macro substitution directives

 It replaces every occurence of the identifier by a predefined string.

Syntax for defining a macro

 # define identifier string

Eg: #define PI 3.1415

 #define f(x) x *x

 #undef PI

Program Program

#define wait getch() #define wait getch()

main () main ()

{ {

clrscr (); #undef wait;

printf (“Hello”); clrscr ();

wait ; printf (“Hello”);

} wait ;

Output: }

Hello Output

Error since wait is undefined before using it

2. File inclusion directives:

 An external file containing functions (or) macro definitions can be included using

#include directive

Programming For Problem Solving

Syntax

 # include <filename> (or) #include “filename”

Eg:

 #include <stdio.h>

 main ()

 {

 printf (“hello”);

 }

The definition of the function printf () is present in <stdio.h>header file.

3. Compiler control directives

 C pre processor offers a feature known as conditional compilation, which can be used to

switch ON (or) OFF a particular line (or) group of lines in a program.

Eg: #if, #else, #endif etc.

 #define LINE 1

 main ()

 {

 #ifdef LINE

 printf (”this is line number one”);

 #else

 printf(„This is line number two”);

 #endif

 }

FILE :

Definition :It is collection of records (or) It is a place on hard disk where data is stored

permanently.

Types of Files: (1)Text file

 (2)Binary File

1. Text File : It contains alphabets and numbers which are easily understood by human beings.

2. Binary file : It contains 1‟s and 0‟s which are easily understood by computers.

 Based on the data that is accessed, files are classified in to

Output

Hello

Output

This is line number one

Programming For Problem Solving

(1) Sequential files

(2) Random access files

(1) Sequential files: Data is stored and retained in a sequential manner.

(2) Random access Files : Data is stored and retrieved in a random way.

Operations on files : 1. Naming the file

 2. Opening the file

 3. Reading from the file

 4. Writing into the file

 5. Closing the file

Syntax for opening and naming file.

1) FILE *File pointer;

 Eg : FILE * fp;

2) File pointer = fopen (“File name”, “mode”);

 Eg : fp = fopen (“sample.txt”, “w”);

 FILE *fp;

 fp = fopen (“sample.txt”, “w”);

Modes of the opening the file :

r - File is opened for reading

w - File is opened for writing

a - File is opened for appending (adding)

r+ - File is opened for both reading & writing

w+ - File is opened for both writing & reading

a+ - File is opened for appending & reading

rt - text file is opened for reading

wt - text file is opened for writing

at - text file is opened for appending

r+t - text file is opened for reading & writing

w+t - text file is opened for both writing & reading

Programming For Problem Solving

a+t - text file is opened for both appending & reading

rb - binary file is opened for reading

wb - binary file is opened for writing

ab - binary file is opened for appending

r+b - binary file is opened for both reading & writing

w+b - binary file is opened for both writing & reading

a+b - binary file is opened for both appending & reading.

1) Write mode of opening the file

 FILE *fp;

 fp =fopen (“sample.txt”, “w”);

a) If the file does not exist then a new file will be created

b) If the file exists then old content gets erased & current content will be stored.

2. Read mode of opening the file:

 FILE *fp

fp =fopen (“sample.txt”, “r”);

a) If the file does not exists, then fopen function returns NULL value.

b) If the file exists then data is read from the file successfullly

3. Append mode of opening a file

 FILE *fp;

 fp =fopen (“sample.txt”, “a”);

a) If the file doesn‟t exists, then a new file will be created.

b) If the file exists, the current content will be appended to the old content

Mode Exist Not exist

r Read fp = “NULL”

w

 Current

 content

New file will be created

a

 Old content

 Current content

New file will be created

Programming For Problem Solving

I/O STREAMS:

Stream : flow of data

 scanf()

 printf()

I/0 functions:

1) high level I/o

 These are easily understood by human beings

 Advantage: portability.

2) Low level I/o

 These are easily understood by computer

 Advantages. Execution time is less

 Disadvantage: Non protability

 High level I/o Functions

1) fprintf () - to write data into a file

2) fscanf () - To read data from a file

3) putc ()/ fputc() - to write a character into a file

4) getc () /fgetc() - to read a character from a file

5) putw () - To write a number into a file

6) getw () - To read number from a file

7) fputs () - To write a string into a file

8) fgets () - To read a string from a file

9)fread() - To read an entire record from a file

Keyboard

Monitor

„C‟

Program

Input stream

Output stream

Programming For Problem Solving

10)fwrite() - To write an entire record into a file

fprint () & fscanf () functions

1) fprint ()

Syntax : fprintf (file pointer, “ control string”, variable list)

Eg: FILE *fp;

fprintf (fp, “%d%c”, a,b);

2) fscanf ()

Syntax : fscanf(file pointer, “control string”, & variable list);

Eg: FILE *fp;

fscanf (fp, “%d%c”, &a,&b);

Program for storing the details of an employee in a file and print the same

main ()

{

FILE *fp;

int eno;

char ename [30];

float sal;

clrscr ();

 fp =fopen (“emp.txt”, “w”);

printf (“enter the details of eno, ename, sal”);

scanf (“%d%s%f”, &eno, ename, &sal);

fprintf (fp, “%d%s%f”, eno, ename, sal);

fclose (fp);

fp = fopen (“emp.txt”, “r”);

fscanf (fp, “%d%s%f”, &eno, ename, &sal);

Programming For Problem Solving

 printf (“employee no: = %d”, eno);

 printf (“employee name = %s”, ename);

 printf (“salary = %f”, sal);

 fclose (fp);

 getch();

}

Program for storing the details of 60 employers in a file and print the same

main ()

{

 FILE *fp;

 int eno, i;

 char ename [80];

 float sal;

 clrscr ();

 fp = fopen (“emp1. txt”, “w”);

 for (i=1; i<60; i++)

{

printf (“enter the eno, ename, sal of emp%d”, i);

scanf (“%d%s%f”, &eno, ename, &sal);

fprintf (fp, “%d %s %f”, eno, ename, sal);

}

fclose (fp);

fp = fopen (“emp1.txt”, “r”);

for (i=1; i<60; i++)

 {

 fscanf(fp, “%d %s %f”, &eno, ename, &sal);

 printf (“details of employee %d are \n”, i);

 printf (“eno = %d, ename = %s, sal = %f”, eno, ename, sal);

 }

 fclose (fp);

 getch ();

Programming For Problem Solving

}

putc() and getc() functions:

1) putc (): It is used for writing a character into a file

Syntax :

 putc (char ch, FILE *fp);

Eg : FILE *fp;

 char ch;

 putc(ch, fp);

2) get c () : It is used to read a character from file

Syntax :

 char getc (FILE *fp);

Eg: FILE *fp;

 char ch;

 ch = getc(fp);

Program :

main ()

{

 FILE *fp;

 char ch;

 clrscr ();

 fp = fopen (“characters.txt”, “w”);

Keyboard

Monitor

file

getchar () putc ()

putchar () getc ()

Programming For Problem Solving

 printf (“enter text. press ctrl+z at the end”);

 while ((ch = getchar ())! = EOF)

 {

 putc(ch, fp);

 }

 fclose (fp);

 fp =open (“characters. txt”, “r”);

 printf (“file content is \n”);

 while ((ch = getc (fp))! = EOF)

 {

 putchar (ch);

 }

 fclose (fp);

getch ();

}

Output:

Enter text press ctrl+z at the end.

Hello how r u ^z

File Content is

Hello How r u

putw () and getw () functions:

1. putw() : It is used for writing a number into file.

Syntax: putw (int num, FILE *fp);

Eg: FILE *fp;

 int num;

 putw(num, fp);

2. getw (): It is used for reading a number from a file

Syntax :

 int getw (FILE *fp);

Eg : FILE *fp;

 int num;

Programming For Problem Solving

 num = getw(fp);

Program for storing no‟s from 1 to 10 and print the same

main ()

{

 FILE *fp;

 int i;

 clrscr ();

 fp = fopen (“number. txt”, “w”);

 for (i =1; i< = 10; i++)

 {

 putw (i, fp);

 }

 fclose (fp);

 fp =fopen (“number. txt”, “r”);

 printf (“file content is ”);

 for (i =1; i< = 10; i++)

 {

 i= getw(fp);

 printf (“%d”,i);

 }

 fclose (fp);

 getch ();

 }

Program for copying the contents of one file into another file

main ()

{

 FILE *fp1, *fp2;

Keyboard

Monitor

scanf (“%d”)
putw ()

printf (“%d”)

getw ()

File

Programming For Problem Solving

 char ch;

 clrscr ();

 fp1 = fopen (“file1.txt”, “w”);

 printf (“enter text press ctrl+z at the end”);

 while ((ch = getchar ())! = EOF)

 {

 putc(ch, fp1);

 }

 fclose (fp1);

 fp1 =fopen (“file1. txt”, “r”);

 fp2 =fopen (“file2. txt”, “w”);

 while ((ch = getc (fp1))! = EOF)

 {

 putc(ch,fp2);

 }

 fclose (fp1);

fclose (fp2);

fp2 = fopen (“file2.txt”, “r”);

printf (“File2 contents are”);

while ((ch = getc(fp2))! = EOF)

 putchar (ch);

fclose (fp2);

getch ();

}

 Program for displaying the contents of a file

main ()

{

 FILE *fp;

 char ch ;

 clrscr ();

 fp = fopen (“file1.txt”,”r”);

Programming For Problem Solving

 if (fp = = NULL)

 {

 printf (“File does not exist”);

 }

 else

 {

 printf (“file content is”)

 while ((ch = getc(fp))! = EOF)

 putchar (ch);

 }

 fclose (fp);

 getch ();

}

 Program to merge two files into a third file. (the contents of file1, file2 are placed in file3)

main ()

{

 FILE *fp1, *fp2, *fp3;

 char ch;

 clrscr ();

 fp1 = fopen (“file1.txt”, “w”);

 printf (“enter text into file1”);

 while ((ch = getchar ())! = EOF)

 {

 putc(ch, fp1);

 }

 fclose (fp1);

fp2 = fopen (“file2.txt”, “r”);

 printf (“enter text into file2”);

 while ((ch = getchar ())! = EOF)

 putc(ch, fp2);

 fclose (fp2);

Programming For Problem Solving

 fp1 =fopen (“file1. txt”, “r”);

fp2 =fopen (“file2. txt”, “r”);

 fp3 =fopen (“file3. txt”, “w”);

 while ((ch = getc (fp1))! = EOF)

 putc(ch,fp3);

 while ((ch = getc (fp2))! = EOF)

 putc(ch,fp3);

 fclose(fp1);

fclose (fp2);

fclose (fp3);

fp3 = fopen (“file3.tx”, “r”);

printf (“File3 contents is”);

while ((ch = getc(fp3))! = EOF)

 purchar (ch);

fclose (fp3);

getch ();

}

fput c () and fgetc () functions :

1) fputc() : It is used for writing a character in to a file .

Syntax :

fputc (char ch, FILE *fp);

Eg : FILE *fp;

 char ch;

 fputc (ch.fp);

2. fgetc() : This is used for reading a character from a file

Syntax :

fputc (char ch, FILE *fp);

Eg : FILE *fp;

 char ch;

Programming For Problem Solving

 ch = fgetc(fp);

fgets () and fputs () functions :

1) fgets () : It is used for reading a string from a file

Syntax :

fgets (string variable, No. of characters, File pointer);

Eg : FILE *fp;

 char str [30];

 fgets (str,30,fp);

2) fputs () : It is used for writing a string into a file

Syntax :

fputs (string variable, file pointer);

Eg : FILE *fp;

 char str[30];

 fputs (str,fp);

Program :

main ()

{

FILE *fp;

 char str [30];

 int i,n;

 clrscr ();

 printf (“enter no of strings”);

 scanf (“%d”, & n);

 fp = fopen („strings.txt”, “w”);

 for (i=1; i<=n; i++)

 {

Keyboard

Monitor

gets () fputs ()

 puts ()

 fgets ()

File

Programming For Problem Solving

 printf (”enter string %d”,i);

 gets (str);

 fputs (str, fp);

 }

 fclose (fp);

 fp = fopen (”strings.txt”, ”r”);

 for (i=1; i<=n; i++)

 {

 fgets (str, 30, fp);

 printf (”string %d =”, i);

 puts (str);

 }

 fclose (fp);

 getch ();

}

fread () and fwrite () functions

1. fread () : It is used for reading entire record at a time.

Syntax : fread(& structure variable, size of (structure variable), no of records, file pointer);

Eg : struct emp

 {

 int eno;

 char ename [30];

 float sal;

 } e;

 FILE *fp;

 fread (&e, sizeof (e), 1, fp);

2. fwrite () : It is used for writing an entire record at a time.

Syntax : fwrite(& structure variable , size of structure variable, no of records, file pointer);

Eg : struct emp

 {

 int eno:

Programming For Problem Solving

 char ename [30];

 float sal;

 } e;

 FILE *fp;

 fwrite (&e, sizeof(e), 1, fp);

program for storing the details of 60 students into a file and print the same using

fread () and fwrite ()

struct student

{

 int sno;

 char sname [30];

 float marks;

};

main ()

{

 struct student s[60];

 int i;

 FILE *fp;

 clrscr ();

 fp = fopen (“student1. txt”, “w”);

 for (i=0; i<60; i++)

 {

 printf (“enter details of student %d”, i+1);

 scanf (“%d%s%f”. &s[i].sno,s[i].sname, &s[i].marks);

fwrite (&s[i], sizeof (s[i]), 1, fp);

 }

 fclose (fp);

 fp = fopen (“student1. txt”, “r”);

 for (i=0; i<60; i++)

 {

 printf (“details of student %d are”, i+1);

Programming For Problem Solving

 fread (&s[i], sizeof (s[i]) ,1,fp);

 printf(“student number = %d”, s[i]. sno.);

 printf(“student name = %s”, s[i]. sname.);

 printf(“marks = %f”, s[i]. marks);

 }

 fclose (fp)

 getch();

}

ERROR HANDLING IN FILES:-

 Some of the errors in files are

 1. Trying to read beyond end of file

 2. Device over flow

 3. Trying to open an invalid file

 4. Performing a invalid operation by opening a file in a different mode.

Functions for error handling.

1) ferror ()

2) perror ()

3) feof ()

1. ferror ()

It is used for detecting an error while performing read / write operations.

Syntax :

int ferror (file pointer);

eg : FILE *fp;

 if (ferror (fp))

 printf (“error has occurred”);

 it returns zero if success and a non- zero otherwise.

2. perror ()

 It is used for printing an error.

Syntax :

 perror (string variable);

Programming For Problem Solving

Eg : FILE *fp;

 char str[30] = ”Error is”;

 perror (str);

O/P : Error is : error 0

Program :

main ()

{

 FILE *fp;

 char str[30] = “error is”;

 int i = 20;

 clrscr ();

 fp = fopen (“sample. txt”, “r”);

 if (fp = = NULL)

 {

 printf (“file doesnot exist”);

 }

 else

 {

 fprintf (fp, “%d”, i);

 if (ferror (fp))

 {

 perror (str);

 printf (“error since file is opened for reading only”);

 }

fclose (fp);

getch ();

}

O/P: Error is : Error1 compiler generated.

 Error since file is opened for reading by us.

3. feof ()

Programming For Problem Solving

It is used for checking whether end of the file has been reached (or) not.

Syntax :

 int feof (file pointer);

Eg : FILE *fp;

 if (feof (fp))

 printf (“reached end of the file”);

 If returns a non zero if success and zero otherwise.

Program:

main ()

{

 FILE *fp;

 int i,n;

 clrscr ();

 fp = fopen (“number. txt”, “w”);

 for (i=0; i<=100;i= i+10)

 {

 putw (i, fp);

 }

 fclose (fp);

 fp = fopen (“number. txt”, “r”);

 printf (“file content is”);

 for (i=0; i<=100; i++)

 {

 n = getw (fp);

 if (feof (fp))

 {

 printf (“reached end of file”);

 break;

 }

 else

 {

Programming For Problem Solving

 printf (“%d”, n);

 }

 }

 fclose (fp);

getch ();

}

Outpute : File content is

 10 20 30 40 50

 60 70 80 90 100

 Reached end of the file.

Other file functions

Random accessing of files

1. ftell ()

2. rewind ()

3. fseek ()

1. ftell () : It returns the current postion of the file pointer

Syntax : int n = ftell (file pointer)

Eg : FILE *fp;

 int n;

 n = ftell (fp);

Note : ftell () is used for counting the no of characters entered into a file.

2. rewind ()

It makes the file pointer move to the beginning of the file.

Syntax: rewind (file pointer);

Eg : FILE *fp;

Programming For Problem Solving

 rewind (fp);

 n = ftell (fp);

 printf (“%d”, n);

o/p: 0 (always).

3. fseek ()

It is used to make the file pointer point to a particular location in a file.

Syntax: fseek(file pointer,offset,position);

offset :

 The no of positions to be moved while reading or writing.

 If can be either negative (or) positive.

 Positive - forward direction.

 Negative – backward direction .

position :

 it can have 3 values.

0 – Beginning of the file

1 – Current position

2 – End of the file

Eg :

1. fseek (fp,0,2) - fp is moved 0 bytes forward from the end of the file.

2. fseek (fp, 0, 0) – fp is moved 0 bytes forward from beginning of the file

3. fseek (fp, m, 0) – fp is moved m bytes forward from the beginning of the file.

4. fseek (fp, -m, 2) – fp is moved m bytes backward from the end of the file.

Errors :

1. fseek (fp, -m, 0);

2. fseek(fp, +m, 2);

Write a program for printing some content in to the file and print the following ?

1. Number of characters entered into the file.

2. Reverse the characters entered into the file.

Programming For Problem Solving

main ()

 {

 FILE *fp;

 char ch;

 int n;

 clrscr ();

 fp = fopen (“reverse. txt”, “w”);

 printf (“enter text press ctrl+z of the end”);

 while ((ch = getchar()) ! EOF)

 {

 putc (ch, fp);

 }

 n = ftell (fp)

 printf (“No. of characters entered = %d”, n);

 rewind (fp);

 n = ftell (fp);

 printf (“fp value after rewind = %d”,n);

 fclose (fp);

 fp = fopen (“reverse.txt”, “r”);

 fseek (fp, -1, 2);

 printf (“reversed content is”);

 do

 {

 ch = getc (fp);

 printf (“%c”, ch);

 } while (!fseek (fp, -2, 1);

 fclose (fp);

 getch ();

 }

Output : Enter text press ctrl z at the end.

 How are you ^z

Programming For Problem Solving

 No. of characters entered = 11

 fp value after rewind =0

 Reversed content is uoy era woh.

Programming For Problem Solving

 Page 123

UNIT-IV

Programming For Problem Solving

 Page 124

FUNCTIONS

Def : A function is a self contained block that carries out a specific well defined task.

Advantages

1. Reusability i.e. a function may be used by many other programs.

2. The length of the source program can be reduced.

3. It is easy to locate and isolate a faulty function.

4. It facilitates top-down modular programming.

Top down design and structure charts

 “Top down design” is a problem solving method in which a complex problem is solved

by breaking up into sub problems.

 It proceeds from the original problem at the top level to the sub problems at each lower

level

 “structure chart” is a documentation tool that shows the relationships among the sub

problems of a problem.

 The splitting of a problem into its related sub problems is analogous to the process of

refining an algorithm.

 e.g. Performing arithmetic operations on 2 numbers

1. find sum

2. find difference

3. find product

4. find quotient

Programming For Problem Solving

 Page 125

Refined algorithm for 1
st
 step

1.1 take 2 numbers a, b

1.2 sum, c = a + b

1.3 print sum

Structure chart

Types of functions

Functions are broadly classified into 2 types

They are

1) predefined functions

2) user defined functions

1) predefined (or) library functions

 These functions are already defined in the system libraries

 Programmer can reuse the existing code in the system libraries to write error free code.

 But to use the library functions, user must be aware of syntax of the function.

eg: 1) sqrt() function is available in math.h library and its usage is :

 y= sqrt (x)

 number must be positive

 eg: y = sqrt (25)

 then „y‟ = 5

2 printf () function is available in stdio.h library

Programming For Problem Solving

 Page 126

3) clrscr () function is available in conio.h library

Program

#include<stdio.h>

#include<conio.h>

#include<math.h>

main ()

{

 int x,y;

 clrscr ();

 printf (“enter a positive number”);

 scanf (“ %d”, &x)

 y = sqrt(x);

 printf(“squareroot = %d”, y);

 getch();

}

Output

 Enter a positive number 25

 Squareroot = 5

2) user defined functions

These functions must be defined by the programmer (or) user

Programmer has to write the coding for such functions and test them properly before using them

The syntax of the function is also given by the user and therefore need not include any header

files.

Eg: main (), swap (), sum () etc

Program

#include<stdio.h>

#include<conio.h>

main ()

{

 int sum (int, int);

 int a, b, c;

Programming For Problem Solving

 Page 127

clrscr ();

 printf (“enter 2 numbers”);

 scanf (“ %d %d”, &a ,&b)

 c = sum (a,b);

 printf(“sum = %d”, c);

 getch();

}

int sum (int a, int b)

{

 int c;

 c=a+b;

 return c;

}

Output

Enter 2 numbers 10 20

Sum = 30

Communications Among functions

Functions communicate among themselves using arguments and return value.

Farm of „C‟ function

return-datatype function name (argument list)

{

 local variable declarations;

 executable statements(s);

 return (expression);

}

eg: void mul (int x, int y)

 {

 int p;

 p=x*y;

 printf(“product = %d”,p);

Programming For Problem Solving

 Page 128

 }

Return values and their types

 A function may (or) may not send back any value to the calling function

 If it does, it is done through the return statement

 A called function can only return one value per call

 The return types are void, int, float, char and double.

 If a function is not returning any value then its return type is „void‟

Function name

 A function must follow the same rules of formation as other variables name in „C‟

 A function name must not duplicate library routine names (or) predefined function

names.

Argument list

 The argument list contains valid variable names separated by commas

 The argument variables receive values from the calling function, thus providing a means

for data communication from the calling function to the called function.

Calling a function

 A function can be called by simply using the function name in a statement

Function definition

 When the compiler encounters a function call, the control is transferred to the function

definition.

 All the statements ,in the called function, are together called as function definition

Function header

 The first line in the function definition is called function header.

Actual parameter

 All the variables inside the function call are called actual parameters.

Formal parameters

 All the variables inside the function header are called formal parameters

Program

#include<stdio.h>

#include<conio.h>

Programming For Problem Solving

 Page 129

main ()

{

 int mul (int, int); function prototype

 int a,b,c;

 clrscr();

 printf (“enter 2 numbers”);

 scanf(“%d %d”, &a, &b);

 c = mul (a,b); function call

 printf(“product =%d”,c); Actual parameters

 getch ();

}

 int mul (int a, int b) Formal parameters

 { function header

 int c;

 c = a *b; Function definition

 return c;

 }

Output

Enter 2 numbers: 10 20

Product = 200

Categories of functions:

 Depending on whether arguments are present (or) not and whether a value is returned

(or) not, functions are categorized into:

1) functions without arguments and without return values

2) functions without arguments and with return values

3) Functions with arguments and without return values

4) Functions with arguments and with return values.

1) functions without arguments and without return values

Calling function Analysis Called function

Programming For Problem Solving

 Page 130

eg:

main ()

{

 void sum ();

 clrscr ();

 sum ();

 getch ();

}

void sum ()

{

int a,b,c;

printf(“enter 2 numbers”);

 scanf (“%d%d”, &a, &b);

 c = a+b;

 printf(“sum = %d”,c);

}

2) Functions without arguments and with return values

main ()

{

 fun ();

 }

No arguments are passed

No values are sent back

fun ()

{

}

Calling function Analysis Called function

main ()

{

 int c;

 c= fun ();

 }

No arguments are passed

values are sent back

fun ()

{

 return c;

}

Output

 Enter 2 numbers

 10 20

 Sum=30

Programming For Problem Solving

 Page 131

eg:

main ()

{

 int sum ();

 int c;

clrscr ();

 c= sum ();

 printf(“sum = %d”,c);

getch ();

}

int sum ()

{

int a,b,c;

printf(“enter 2 numbers”);

 scanf (“%d%d”, &a, &b);

 c = a+b;

 return c;

}

3) Functions with arguments and without return values

eg:

main ()

{

 void sum (int, int);

 int a,b;

Calling function Analysis Called function

main ()

{

 fun (a,b);

}

 Arguments are passed

No values are sent back

fun (int a, int b)

{

}

Output

enter 2 numbers

 10 20

Sum = 30

Programming For Problem Solving

 Page 132

clrscr ();

 printf(“enter 2 numbers”);

 scanf(“%d%d”, &a,&b);

sum (a,b);

getch ();

}

void sum (int a, int b)

{

int c;

c= a+b;

 printf (“sum=%d”, c);

}

4) Functions with arguments and with return values.

eg:

main ()

{

 int sum (int,int);

 int a,b,c;

clrscr ();

 printf(“enter 2 numbers”);

scanf(“%d%d”, &a,&b);

c= sum (a,b);

printf (“sum=%d”, c);

getch ();

Calling function Analysis Called function

main ()

{

 int c;

 c= fun (a,b);

}

Arguments are passed

 value are sent back

fun (int a, int b)

{

 return c;

}

Output

enter 2 numbers

10 20

sum = 30

Programming For Problem Solving

 Page 133

}

int sum (int a, int b)

{

int c;

c= a+b;

 return c;

}

Scope

 “scope” of a variable determines the part of the program where it is visible

2 types

 1. local scope 2. global scope

1. local scope

 Local scope specifies that variables defined within the block are visible only in that block

and invisible outside the block.

2. global scope

 Global scope specifies that variables defined outside the block are visible upto end of the

program.

eg:

 int c= 30; /* global area */

 main ()

 {

 int a = 10;

 printf (“a=%d, c=%d” a,c);

 fun ();

 }

 fun ()

 {

 printf (“c=%d”,c);

 }

output

 a =10, c = 30

 c = 30

Output

enter 2 numbers

10 20

Sum = 30

Local function area

Programming For Problem Solving

 Page 134

Recursive Functions

 “recursion” is the process of defining something in terms of it self.

 “recursive function” is a function that calls itself again in the body of the function

Eg:

 A function fact (), which computes the factorial of an integer „N‟ ,which is the product of

all whole numbers from 1 to N

 When fact () is called with an argument of 1 (or) 0, the function returns 1. otherwise, it

returns the product of n*fact (n-1), this happens until „n‟ equals 1.

 Fact (5) =5* fact (4)

 =5*4*3* fact (3)

 =5*4*3*2* fact (2)

 =5*4*3*2*1 fact (1)

 =5*4*3*2*1

 = 120.

main ()

{

int n,f;

int fact (int);

clrscr ();

printf (“enter a number”);

scanf (“%d”, &n);

f= fact (n);

printf (factorial value = %d”,f);

}

int fact (int n)

{

 int f;

 if ((n==1) || (n==0))

 return 1;

 else

Programming For Problem Solving

 Page 135

f= n*fact (n-1);

 return f;

}

Output

Enter a number 5

Factorial value = 120

Preprocessor commands

 „preprocessor‟ is a program that processes the source code before it passes through the

compiler

 It operates under the control of preprocessor directives which begin with the symbol #

3 types

1) Macro substitution directives

2) File inclusion directives

3) compiler control directives

1) Macro substitution directives

 It replaces every occurence of the identifier by a predefined string.

Syntax for defining a macro

 # define identifier string

Eg: #define PI 3.1415

 #define f(x) x *x

 #undef PI

Program Program

#define wait getch() #define wait getch()

main () main ()

{ {

clrscr (); #undef wait;

printf (“Hello”); clrscr ();

wait ; printf (“Hello”);

} wait ;

Output: }

Hello Output

Programming For Problem Solving

 Page 136

Error since wait is undefined before using it

2. File inclusion directives:

 An external file containing functions (or) macro definitions can be included using

#include directive

Syntax

 # include <filename> (or) #include “filename”

Eg:

 #include <stdio.h>

 main ()

 {

 printf (“hello”);

 }

The definition of the function printf () is present in <stdio.h>header file.

3. Compiler control directives

 C pre processor offers a feature known as conditional compilation, which can be used to

switch ON (or) OFF a particular line (or) group of lines in a program.

Eg: #if, #else, #endif etc.

 #define LINE 1

 main ()

 {

 #ifdef LINE

 printf (”this is line number one”);

 #else

 printf(„This is line number two”);

 #endif

 }

Structure and functions

 There are 3 ways by which the values of structure can be transferred from one function to

another.

1) passing individual members as arguments to function

Output

Hello

Output

This is line number one

Programming For Problem Solving

 Page 137

 Each member is passed as an argument in the function call.

 They are collected independently in ordinary variables in function header.

Eg:

struct date

{

 int day;

 int mon;

 int yr;

};

main ()

{

 struct date d= {02,01,2010};

 clrscr ();

 display (d.day, d.mon, d.yr);

 getch ();

}

display (int a, int b, int c)

{

 printf(“day = %d”, a);

 printf(“month = %d”,b);

 printf(“year = %d”,c);

}

2. Passing entire structure as an argument to function

 Name of the structure variable is given as argument in function call

 It is collected in another structure variable in function header

Disadvantage : A copy of the entire structure is created again wasting memory

Program

struct date

{

 int day;

 int mon;

Programming For Problem Solving

 Page 138

 int yr;

};

main ()

{

 struct date d= {02,01,2010};

 display (d);

 getch ();

}

display (struct date dt)

{

 printf(“day = %d”, dt.day);

 printf(“month = %d”,dt.mon);

 printf(“Year = %d”,dt.yr);

}

3. Passing the address of structure as an argument to function

 The Address of the structure is passed as an argument to the function

 It is collected in a pointer to structure in function header

Advantages:

1. No wastage of memory as there is no need of creating a copy again

2. No need of returning the values back as the function can access indirectly the entire

structure and work on it.

Program

struct date

{

 int day;

 int mon;

 int yr;

};

main ()

{

Programming For Problem Solving

 Page 139

 struct date d= {02,01,2010};

 display (&d);

 getch ();

}

display (struct date *dt)

{

 printf(“day = %d”, dtday);

 printf(“month = %d”,dtmon);

 printf(“Year = %d”,dt yr);

}

Pointers and functions;

pass by value: Here values are sent as arguments

void main()

{

 void swap(int,int);

 int a,b;

 clrscr();

 printf(“enter 2 numbers”);

 scanf(“%d%d”,&a,&b);

 printf(“Before swapping a=%d b=%d”,a,b);

 swap(a,b);

 printf(“after swapping a=%d, b=%d”,a,b);

 getch();

}

void swap(int a,int b)

{

 int t; all these statements is equivalent to

 t=a; a = (a+b) – (b =a);

 a=b; or

 b=t; a = a + b;

Programming For Problem Solving

 Page 140

} b = a – b;

 a = a – b;

o/p:

enter 2 numbers 10 20

Before swapping a=10 b=20

After swapping a=10 b=20

pass by reference: Here addresses are sent as arguments

void main()

{

 void swap(int *,int *);

 int a,b;

 clrscr();

 printf(“enter 2 numbers”);

 scanf(“%d%d”,&a,&b);

 printf(“Before swapping a=%d b=%d”,a,b);

 swap(&a, &b);

 printf(“after swapping a=%d, b=%d”,a,b);

 getch();

}

void swap(int *a,int *b)

{

 int t;

 t=*a;

 *a=*b; *a = (*a + *b) – (*b = * a);

 *b=t;

}

o/p:

enter 2 numbers 10 20

Programming For Problem Solving

 Page 141

Before swapping a=10 b=20

After swapping a=20 b=10

Pointer to functions:

 It holds the base address of function definition in memory

Declaration

 datatype (*pointername) ();

 The name of the function itself specifies the base address of the function. So,

initialization is done using function name.

 Eg: int (*p) ();

 p = display; if display () is a function that is defined.

Program for calling a function using pointer to function

Program

main ()

{

 int (*p) ();

 clrscr ();

 p = display;

 *(p) ();

 getch ();

}

display ()

{

 printf(“Hello”);

}

Output

Hello

main ()

{

 clrscr ();

 display ();

 getch();

}

display ()

{

 printf (“Hello”);

}

Programming For Problem Solving

 Page 142

ALGORITHM

ALGORITHM:

 It is a step – by – step procedure for solving a problem

 If algorithm is written in English like sentences then it is called as „PSEUDO CODE‟

Properties of an Algorithm

An algorithm must posses the following 5 properties. They are

6. Input

7. Output

8. Finiteness

9. Definiteness

10. Effectiveness

6. Input : An algorithm must have zero (or) more number of inputs

7. Output: Algorithm must produce one (or) more number of outputs

8. Finiteness : An algorithm must terminate in countable number of steps

9. Definiteness: Each step of the algorithm must be stated clearly

10. Effectiveness: Each step of the algorithm must be easily convertible into program 1.

statements

1. Example

Algorithm for finding the average of 3 numbers

7. start

8. Read 3 numbers a,b,c

9. Compute sum = a+b+c

10. compute avg = sum/3

11. Print avg value

12. Stop

2. EXAMPLE: Finding the roots of a quadratic equation, ax
2
+bx+c

 There will be 2 roots for such quadratic equation

 Input : a,b,c values

 Output: r1, r2 values

Programming For Problem Solving

 Page 143

 Procedure :
2

1

b b 4ac
r

2a

Algorithm:

1. start

2. Read a,b,c values

3. Compute d = b
2

4ac

4. if d > 0 then

 a) r1 = b+ sqrt (d)/(2*a)

 b) r2 = b sqrt(d)/ (2*a)

5. otherwise if d = 0 then

 a) compute r1 = -b/2a

 r2=-b/2a

 b) print r1,r2 values

6. otherwise if d < 0 then print roots are imaginary

7. Stop

3. EXAMPLE : To print the Fibonacci series of n terms as follows.

 0,1,1,2,3,5,8,13, . . , n terms

ALGORITHM:

Step 1: start

Step 2: initialize the a=0, b=1

Step 3: read n

Step 4: if n== 1 print a go to step 7. else goto step 5

Step 5: if n== 2 print a, b go to step 7 else print a,b

Step 6: initialize i=3

Step 7: if i<= n do as follows. If not goto step 7

c=a+b

print c

a=b

b=c

increment i value

goto step 7

Step 8: stop

2

2

b b 4ac
r

2a

Programming For Problem Solving

 Page 144

4. EXAMPLE : To print a prime numbers up to 1 to n(i.e., with in the range from 1 to n)

ALGORITHM:

Step 1: start

Step 2: read n

Step 3: initialize i=1,c=0

Step 4:if i<=n goto step 5

If not goto step

10 Step 5: initialize j=1

Step 6: if j<=1 do as the follow. If no goto step 7

i)if i%j==0 increment c

ii) increment j

iii) goto Step 6

Step 7: if c== 2 print i

Step 8: increment i

Step 9: goto step 4

Step 10: stop

5.EXAMPLE : The total distance travelled by vehicle in 't' seconds is given by distance =

ut+1/2at2 where 'u' and 'a' are the initial velocity (m/sec.) and acceleration (m/sec2).

ALGORITHM:

Step 1:Start

Step2 : Read t ,dt

Step 3: Set i to 1

Step 4:Set k to dt

Step 5: Read u,a

Step 6: set s to u*k+0.5*d*k*k

Step 7: Write s

Step 8: If(k<=t) and i=1 then

Begin

go to step 6

Else

Begin

read j

if(j=0)

then Begin

Set I to 0

End

Else

Begin

Set I to 1

go to step 4

End

End

Step 9: Stop

Programming For Problem Solving

 Page 145

11. EXAMPLE :To perform the binary search operation

ALGORITHM:

Main Program:

Step 1: Start

Step 2:Read the value of n

Step 3:for i=1 to n increment in steps of 1

STEP 4 :Read the value of ith element into array

 STEP5 : Read the element(x) to be search<--binary(a,n,x)

 Step 6: if search equal to 0 goto step 7 otherwise goto step 8

 Step 7: print unsuccessful search

 Step 8: print successful search

Step 9: stop

Binary Search Function:

 Step 1: start

 Step 2: initialise low to 1 ,high to n, test to 0

 Step 3: if low<= high repeat through steps 4 to 9 otherwise goto step 10

Step 4: assign (low+high)/2 to mid

Step 5: if m<k[mid] goto step 6 otherwise goto step 7

Step 6: assign mid-1 to high goto step 3

Step 7: if m>k[mid] goto step 8 otherwise goto step 9

Step 8: assign mid+1 to low

Step 9: return mid

Step 10: return 0

Step 11:stop

12. EXAMPLE : Write a c program for selection sort

ALGORITHM:

 Step 1:Start

 Step 2:Initiliaze the variables I,j,temp and arr[]

Step 4:Read the loop and check the condition. If the condition is true print the

array elements and increment the I value. Else goto step 4

Step 4:Read the loop and check the condition. If the condition true then

goto next loop.

Step 5:Read the loop and check the condition. If the condition true then

goto if condition

Programming For Problem Solving

 Page 146

Step 6:If the condition if(arr[i]>arr[j]) is true then do the following

steps temp=arr[i]

arr[i]=arr[j]

arr[j]=temp Step

7:increment the j value

Step 8:perform the loop operation for the displaying the sorted elements.

Step 9:print the sorted elements

Step 10:stop

13. EXAMPLE : Program that implements the bubble sort method

ALGORITHM:

Main Program:

1. start

2. read the value of n

3. for i= 1 to n increment in steps of 1

Read the value of ith element into array

4. call function to sort (bubble_sort(a,n))

5. for i= 1 to n increment in steps of 1

print the value of ith element in the array

5. stop

Bubble Sort Function:

1. start

2. initialise last to n

3. for i= 1 to n increment in steps of 1

begin

4. initialise ex to 0

5. for i= 1 to last-1 increment in steps of

1 begin

6. if k[i]>k[i+1] goto step 7 otherwise goto step 5

begin

7. assign k[i] to temp assign k[i+1]

to k[i] assign temp to

k[i+1] increment ex

by 1 end-if

end inner for loop

11. if ex!=0

assign last-1 to last

end for loop

12. stop

